用于高效隔热的丝瓜灵感超轻超弹微纳米纤维气凝胶

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-25 DOI:10.1002/adfm.202412424
Wei Zhang, Guoqiang Liang, Sai Wang, Fengjin Yang, Xiaoyan Liu, Jianyong Yu, Shichao Zhang, Bin Ding
{"title":"用于高效隔热的丝瓜灵感超轻超弹微纳米纤维气凝胶","authors":"Wei Zhang, Guoqiang Liang, Sai Wang, Fengjin Yang, Xiaoyan Liu, Jianyong Yu, Shichao Zhang, Bin Ding","doi":"10.1002/adfm.202412424","DOIUrl":null,"url":null,"abstract":"Extreme cold events are becoming more frequent and intense around the world, imposing a huge burden on human health and global economy. However, developing fibrous materials featuring ultralight weight, high shape retention, and high thermal insulation to withstand extreme conditions remains a great challenge. Herein, inspired by the natural porous loofah, an ultralight and superelastic micro/nanofibrous aerogel (MNFA) that integrates hierarchical pores and stable physical entanglements is directly synthesized via gelation electrospinning technology. By manipulating the solution/water molecules interaction of the charged jets, a hierarchical porous structure consisting of fibrous porous networks and aerogel microfibers is developed, which endows MNFA with high porosity (99.7%). Benefiting from the stable physical entanglement structure between the rigid microfibers and flexible nanofibers, the resulting MNFA can withstand large tensile stress (4000 times of its weight) and 1000 compression cycles without being damaged. Moreover, MNFA exhibits ultralight feature (3 mg cm<sup>−3</sup>) and high thermal insulation performance (low thermal conductivity of 25.3 mW m<sup>−1</sup> K<sup>−1</sup>), making a promising contender for highly efficient thermal insulation. This work can offer fresh perspectives on the design and advancement of advanced fibrous aerogels for a variety of uses.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loofah-Inspired Ultralight and Superelastic Micro/Nanofibrous Aerogels for Highly Efficient Thermal Insulation\",\"authors\":\"Wei Zhang, Guoqiang Liang, Sai Wang, Fengjin Yang, Xiaoyan Liu, Jianyong Yu, Shichao Zhang, Bin Ding\",\"doi\":\"10.1002/adfm.202412424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme cold events are becoming more frequent and intense around the world, imposing a huge burden on human health and global economy. However, developing fibrous materials featuring ultralight weight, high shape retention, and high thermal insulation to withstand extreme conditions remains a great challenge. Herein, inspired by the natural porous loofah, an ultralight and superelastic micro/nanofibrous aerogel (MNFA) that integrates hierarchical pores and stable physical entanglements is directly synthesized via gelation electrospinning technology. By manipulating the solution/water molecules interaction of the charged jets, a hierarchical porous structure consisting of fibrous porous networks and aerogel microfibers is developed, which endows MNFA with high porosity (99.7%). Benefiting from the stable physical entanglement structure between the rigid microfibers and flexible nanofibers, the resulting MNFA can withstand large tensile stress (4000 times of its weight) and 1000 compression cycles without being damaged. Moreover, MNFA exhibits ultralight feature (3 mg cm<sup>−3</sup>) and high thermal insulation performance (low thermal conductivity of 25.3 mW m<sup>−1</sup> K<sup>−1</sup>), making a promising contender for highly efficient thermal insulation. This work can offer fresh perspectives on the design and advancement of advanced fibrous aerogels for a variety of uses.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202412424\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412424","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

世界各地的极端寒冷事件日益频繁和剧烈,给人类健康和全球经济造成了巨大负担。然而,开发具有超轻重量、高形状保持力和高隔热性能的纤维材料以抵御极端条件仍然是一项巨大的挑战。本文受天然多孔丝瓜络的启发,通过凝胶化电纺丝技术直接合成了一种超轻、超弹性的微/纳米纤维气凝胶(MNFA),它集成了分层孔隙和稳定的物理缠结。通过操纵带电射流的溶液/水分子相互作用,形成了由纤维状多孔网络和气凝胶微纤维组成的分层多孔结构,从而赋予了 MNFA 高孔隙率(99.7%)。得益于刚性微纤维和柔性纳米纤维之间稳定的物理缠结结构,所制得的 MNFA 可承受较大的拉伸应力(4000 倍于其重量)和 1000 次压缩循环而不会损坏。此外,MNFA 还具有超轻特性(3 mg cm-3)和高隔热性能(导热系数低至 25.3 mW m-1 K-1),有望成为高效隔热材料的竞争者。这项工作可为设计和开发多种用途的先进纤维气凝胶提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Loofah-Inspired Ultralight and Superelastic Micro/Nanofibrous Aerogels for Highly Efficient Thermal Insulation
Extreme cold events are becoming more frequent and intense around the world, imposing a huge burden on human health and global economy. However, developing fibrous materials featuring ultralight weight, high shape retention, and high thermal insulation to withstand extreme conditions remains a great challenge. Herein, inspired by the natural porous loofah, an ultralight and superelastic micro/nanofibrous aerogel (MNFA) that integrates hierarchical pores and stable physical entanglements is directly synthesized via gelation electrospinning technology. By manipulating the solution/water molecules interaction of the charged jets, a hierarchical porous structure consisting of fibrous porous networks and aerogel microfibers is developed, which endows MNFA with high porosity (99.7%). Benefiting from the stable physical entanglement structure between the rigid microfibers and flexible nanofibers, the resulting MNFA can withstand large tensile stress (4000 times of its weight) and 1000 compression cycles without being damaged. Moreover, MNFA exhibits ultralight feature (3 mg cm−3) and high thermal insulation performance (low thermal conductivity of 25.3 mW m−1 K−1), making a promising contender for highly efficient thermal insulation. This work can offer fresh perspectives on the design and advancement of advanced fibrous aerogels for a variety of uses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Achieving Eu2+ Luminescence at Trivalent Lattice Site in Rb3Y(PO4)2:Eu toward Multicolor Emissions by Carbon and Hydrogen Coreduction Tailoring Nanocrystalline/Amorphous Interfaces to Enhance Oxygen Evolution Reaction Performance for FeNi-Based Alloy Fibers Laser Patterning for 2D Lateral and Vertical VS2/MoS2 Metal/Semiconducting Heterostructures Construction of Through-Space Charge-Transfer Nanoparticles for Facilely Realizing High-Performance NIR-II Cancer Phototheranostics A Supercapacitor Driven by MXene Nanofluid Gel Electrolyte Induced the Synergistic High Ionic Migration Rate and Excellent Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1