利用贝叶斯校准法对基于荧光的抗菌活性测定中的尼生素浓度进行定量。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Progress Pub Date : 2024-07-26 DOI:10.1002/btpr.3495
Valentin Steier, Michael Osthege, Laura M Helleckes, Maximilian Siska, Eric von Lieres, Wolfgang Wiechert, Sebastian J Reich, Christian U Riedel, Marco Oldiges
{"title":"利用贝叶斯校准法对基于荧光的抗菌活性测定中的尼生素浓度进行定量。","authors":"Valentin Steier, Michael Osthege, Laura M Helleckes, Maximilian Siska, Eric von Lieres, Wolfgang Wiechert, Sebastian J Reich, Christian U Riedel, Marco Oldiges","doi":"10.1002/btpr.3495","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriocins are ribosomally synthesized peptides with the innate ability to kill or inhibit growth of other bacteria. In recent years, bacteriocins have received increased interest, as their antimicrobial activity enhances food safety and shelf life by combatting pathogens such as Listeria monocytogenes. They also have application potential as an active pharmaceutical compound to combat multidrug-resistant pathogens. As new bacteriocins continue to be discovered, accelerated workflows for screening, identification, and process development have been developed. However, antimicrobial activity measurement is often still limited with regards to quantification and throughput. Here, we present the use of a non-linear calibration model to infer nisin concentrations in cultivation supernatants of Lactococcus lactis ssp. lactis B1629 using readouts of pHluorin2 fluorescence-based antimicrobial activity assays.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of nisin concentration from fluorescence-based antimicrobial activity assay using Bayesian calibration.\",\"authors\":\"Valentin Steier, Michael Osthege, Laura M Helleckes, Maximilian Siska, Eric von Lieres, Wolfgang Wiechert, Sebastian J Reich, Christian U Riedel, Marco Oldiges\",\"doi\":\"10.1002/btpr.3495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteriocins are ribosomally synthesized peptides with the innate ability to kill or inhibit growth of other bacteria. In recent years, bacteriocins have received increased interest, as their antimicrobial activity enhances food safety and shelf life by combatting pathogens such as Listeria monocytogenes. They also have application potential as an active pharmaceutical compound to combat multidrug-resistant pathogens. As new bacteriocins continue to be discovered, accelerated workflows for screening, identification, and process development have been developed. However, antimicrobial activity measurement is often still limited with regards to quantification and throughput. Here, we present the use of a non-linear calibration model to infer nisin concentrations in cultivation supernatants of Lactococcus lactis ssp. lactis B1629 using readouts of pHluorin2 fluorescence-based antimicrobial activity assays.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3495\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3495","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌素是核糖体合成的多肽,具有杀死或抑制其他细菌生长的天生能力。近年来,细菌素受到越来越多的关注,因为它们具有抗菌活性,可以通过对抗李斯特菌等病原体来提高食品安全和延长保质期。此外,细菌素还具有作为活性药物化合物的应用潜力,可用于对抗耐多药病原体。随着新的细菌素不断被发现,筛选、鉴定和工艺开发的工作流程也在不断加快。然而,抗菌活性测量通常在定量和通量方面仍然受到限制。在此,我们介绍使用非线性校准模型,利用基于 pHluorin2 荧光的抗菌活性测定读数来推断乳球菌 B1629 培养上清液中的尼生素浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantification of nisin concentration from fluorescence-based antimicrobial activity assay using Bayesian calibration.

Bacteriocins are ribosomally synthesized peptides with the innate ability to kill or inhibit growth of other bacteria. In recent years, bacteriocins have received increased interest, as their antimicrobial activity enhances food safety and shelf life by combatting pathogens such as Listeria monocytogenes. They also have application potential as an active pharmaceutical compound to combat multidrug-resistant pathogens. As new bacteriocins continue to be discovered, accelerated workflows for screening, identification, and process development have been developed. However, antimicrobial activity measurement is often still limited with regards to quantification and throughput. Here, we present the use of a non-linear calibration model to infer nisin concentrations in cultivation supernatants of Lactococcus lactis ssp. lactis B1629 using readouts of pHluorin2 fluorescence-based antimicrobial activity assays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
期刊最新文献
Non-thermal plasma decontamination of microbes: a state of the art. Mechanistic model of minute virus of mice elution behavior in anion exchange chromatography purification. Comparing in silico flowsheet optimization strategies in biopharmaceutical downstream processes. General strategies for IgG-like bispecific antibody purification. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1