壳聚糖在农业食品领域的应用:综述。

IF 2.4 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Carbohydrate Research Pub Date : 2024-07-20 DOI:10.1016/j.carres.2024.109219
{"title":"壳聚糖在农业食品领域的应用:综述。","authors":"","doi":"10.1016/j.carres.2024.109219","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan is a natural and renewable polysaccharide that can form biopolymers. It is derived from the deacetylation of chitin mainly from crustaceans' shells, but also from fungi and insects. Thanks to unique characteristics such as antimicrobial effects, antioxidant properties or film forming capacities, it has triggered an important amount of research in the last decade about possible applications in industrial fields. The main application field of chitosan is the food industry where it can be used for preservation purposes and shelf-life improvement for fresh food products such as fruits or meat. For beverages, it is used for clarification and fining as well as elimination of spoilage flora in beverages like fruit juices or wine. And in agriculture, it can be used as a plant protection product through different mechanisms like the elicitation of plant defences. The mechanisms of action of chitosan on microorganisms are multiple and complex but revolve mostly around the disturbance of microorganisms’ membranes and cell walls resulting in the leakage of cell material. The use of chitosan is still minor but is promising in finding environmentally friendly alternatives to synthetic chemicals and plastics. Therefore, its characterization is primordial for the future of sustainable production and preservation processes.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008621524001988/pdfft?md5=c6484fbef33059886e2cd18afae6afe1&pid=1-s2.0-S0008621524001988-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Applications of chitosan in the agri-food sector: A review\",\"authors\":\"\",\"doi\":\"10.1016/j.carres.2024.109219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chitosan is a natural and renewable polysaccharide that can form biopolymers. It is derived from the deacetylation of chitin mainly from crustaceans' shells, but also from fungi and insects. Thanks to unique characteristics such as antimicrobial effects, antioxidant properties or film forming capacities, it has triggered an important amount of research in the last decade about possible applications in industrial fields. The main application field of chitosan is the food industry where it can be used for preservation purposes and shelf-life improvement for fresh food products such as fruits or meat. For beverages, it is used for clarification and fining as well as elimination of spoilage flora in beverages like fruit juices or wine. And in agriculture, it can be used as a plant protection product through different mechanisms like the elicitation of plant defences. The mechanisms of action of chitosan on microorganisms are multiple and complex but revolve mostly around the disturbance of microorganisms’ membranes and cell walls resulting in the leakage of cell material. The use of chitosan is still minor but is promising in finding environmentally friendly alternatives to synthetic chemicals and plastics. Therefore, its characterization is primordial for the future of sustainable production and preservation processes.</p></div>\",\"PeriodicalId\":9415,\"journal\":{\"name\":\"Carbohydrate Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0008621524001988/pdfft?md5=c6484fbef33059886e2cd18afae6afe1&pid=1-s2.0-S0008621524001988-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008621524001988\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524001988","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

壳聚糖是一种可形成生物聚合物的天然可再生多糖。甲壳素主要来自甲壳类动物的外壳,也可来自真菌和昆虫。由于甲壳素具有抗菌效果、抗氧化性或成膜能力等独特特性,在过去的十年中,甲壳素在工业领域的可能应用引发了大量研究。壳聚糖的主要应用领域是食品工业,可用于水果或肉类等新鲜食品的保鲜和货架期延长。在饮料方面,它可用于果汁或葡萄酒等饮料的澄清和细化,以及消除腐败菌群。在农业方面,甲壳素可通过不同的机制用作植物保护产品,如激发植物的防御能力。壳聚糖对微生物的作用机制是多方面的,也是复杂的,但主要围绕着干扰微生物的膜和细胞壁,导致细胞物质泄漏。壳聚糖的用途还很小,但在寻找合成化学品和塑料的环境友好型替代品方面大有可为。因此,壳聚糖的特性对未来的可持续生产和保存过程至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications of chitosan in the agri-food sector: A review

Chitosan is a natural and renewable polysaccharide that can form biopolymers. It is derived from the deacetylation of chitin mainly from crustaceans' shells, but also from fungi and insects. Thanks to unique characteristics such as antimicrobial effects, antioxidant properties or film forming capacities, it has triggered an important amount of research in the last decade about possible applications in industrial fields. The main application field of chitosan is the food industry where it can be used for preservation purposes and shelf-life improvement for fresh food products such as fruits or meat. For beverages, it is used for clarification and fining as well as elimination of spoilage flora in beverages like fruit juices or wine. And in agriculture, it can be used as a plant protection product through different mechanisms like the elicitation of plant defences. The mechanisms of action of chitosan on microorganisms are multiple and complex but revolve mostly around the disturbance of microorganisms’ membranes and cell walls resulting in the leakage of cell material. The use of chitosan is still minor but is promising in finding environmentally friendly alternatives to synthetic chemicals and plastics. Therefore, its characterization is primordial for the future of sustainable production and preservation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Research
Carbohydrate Research 化学-生化与分子生物学
CiteScore
5.00
自引率
3.20%
发文量
183
审稿时长
3.6 weeks
期刊介绍: Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects. Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence. Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".
期刊最新文献
Bile acid conjugated chitosan nanoparticles promote the proliferation and epithelial-mesenchymal transition of hepatocellular carcinoma by regulating the PI3K/Akt/mTOR pathway Effect of bacterial dissociation on lipopolysaccharide structure: A study of O-polysaccharide from the marine bacterium Pseudoalteromonas agarivorans KMM 232 (O-form) Modeling conformational changes in alginic acid oligomers induced by external forces Sustainable production of organic acids from chitin biomass catalyzed by Keggin-type heteropolyacid under hydrothermal condition Chitosan-curcumin conjugate prepared by one-step free radical grafting: Characterization, and functional evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1