Tahir Ali Sheikh, Muhammad Ismail, Muhammad Fazle Rabbee, Hira Khan, Ayesha Rafique, Zeerak Rasheed, Amna Siddique, Muhammad Zeeshan Rafiq, Zafar A K Khattak, Shehzada Muhammad Sajid Jillani, Umer Shahzad, Muhammad Nadeem Akhtar, Mohsin Saeed, Khalid A Alzahrani, Jamal Uddin, Mohammed M Rahman, Francis Verpoort
{"title":"用于电化学传感以检测有害污染物的二维 MXene 纳米材料:透视。","authors":"Tahir Ali Sheikh, Muhammad Ismail, Muhammad Fazle Rabbee, Hira Khan, Ayesha Rafique, Zeerak Rasheed, Amna Siddique, Muhammad Zeeshan Rafiq, Zafar A K Khattak, Shehzada Muhammad Sajid Jillani, Umer Shahzad, Muhammad Nadeem Akhtar, Mohsin Saeed, Khalid A Alzahrani, Jamal Uddin, Mohammed M Rahman, Francis Verpoort","doi":"10.1080/10408347.2024.2379851","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes (M<sub>n+1</sub>X<sub>n</sub>T<sub>x</sub>), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-46"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective.\",\"authors\":\"Tahir Ali Sheikh, Muhammad Ismail, Muhammad Fazle Rabbee, Hira Khan, Ayesha Rafique, Zeerak Rasheed, Amna Siddique, Muhammad Zeeshan Rafiq, Zafar A K Khattak, Shehzada Muhammad Sajid Jillani, Umer Shahzad, Muhammad Nadeem Akhtar, Mohsin Saeed, Khalid A Alzahrani, Jamal Uddin, Mohammed M Rahman, Francis Verpoort\",\"doi\":\"10.1080/10408347.2024.2379851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MXenes (M<sub>n+1</sub>X<sub>n</sub>T<sub>x</sub>), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":\" \",\"pages\":\"1-46\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2024.2379851\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2024.2379851","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective.
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.