{"title":"纳米姜黄素和巴豆素对骨髓间充质干细胞增殖和多能性的促进作用","authors":"Nasim Sabouni, Mojgan Mohammadi, Amir Reza Boroumand, Sepideh Palizban, Jalil Tavakol Afshari","doi":"10.22038/IJBMS.2024.74397.16197","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Enhancement of proliferation, pluripotency, and self-renewal capacity as the unique features of MSCs can improve their therapeutic potential to regenerate tissues. In this context, crocin and curcumin, carotenoid compounds with outstanding medicinal properties, could be promising for cell protection and growth. This study aimed to evaluate the impact of nanocurcumin and crocin on BM-MSCs proliferation and pluripotency <i>in vitro</i>.</p><p><strong>Materials and methods: </strong>BM-MSC were isolated from the iliac crest of SCI patients who were candidates for stem cell therapy. The effect of crocin and nanocurcumin on MSC proliferation was evaluated using MTT and PDT assay. The percentage of apoptotic MSCs was measured by flow cytometry. Furthermore, mRNA and protein expression of OCT4 and SOX2 as the proliferation and self-renewal related genes were quantified by real-time PCR and western blotting, respectively.</p><p><strong>Results: </strong>Our findings demonstrated that only low concentrations of nanocurcumin (0.3 and 0.7 µM) and crocin (2.5 5 µM) significantly affected MSCs proliferation and protected them from apoptosis. Also, crocin and nanocurcumin at low doses caused an elevation in the mRNA and protein expression levels of OCT4 and SOX2 genes. In contrast, high concentrations decreased the survival of MSCs and led to increased apoptosis compared with the untreated group.</p><p><strong>Conclusion: </strong>Our results suggest that using nanocurcumin and crocin separately in culturing MSCs can be considered proliferative agents to prepare the more advantageous tool for cell therapies. However, more <i>in vitro</i> and preclinical research is needed in this area.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266738/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stimulating effect of nanocurcumin and crocin on proliferation and pluripotency of bone marrow-derived mesenchymal stem cells.\",\"authors\":\"Nasim Sabouni, Mojgan Mohammadi, Amir Reza Boroumand, Sepideh Palizban, Jalil Tavakol Afshari\",\"doi\":\"10.22038/IJBMS.2024.74397.16197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Enhancement of proliferation, pluripotency, and self-renewal capacity as the unique features of MSCs can improve their therapeutic potential to regenerate tissues. In this context, crocin and curcumin, carotenoid compounds with outstanding medicinal properties, could be promising for cell protection and growth. This study aimed to evaluate the impact of nanocurcumin and crocin on BM-MSCs proliferation and pluripotency <i>in vitro</i>.</p><p><strong>Materials and methods: </strong>BM-MSC were isolated from the iliac crest of SCI patients who were candidates for stem cell therapy. The effect of crocin and nanocurcumin on MSC proliferation was evaluated using MTT and PDT assay. The percentage of apoptotic MSCs was measured by flow cytometry. Furthermore, mRNA and protein expression of OCT4 and SOX2 as the proliferation and self-renewal related genes were quantified by real-time PCR and western blotting, respectively.</p><p><strong>Results: </strong>Our findings demonstrated that only low concentrations of nanocurcumin (0.3 and 0.7 µM) and crocin (2.5 5 µM) significantly affected MSCs proliferation and protected them from apoptosis. Also, crocin and nanocurcumin at low doses caused an elevation in the mRNA and protein expression levels of OCT4 and SOX2 genes. In contrast, high concentrations decreased the survival of MSCs and led to increased apoptosis compared with the untreated group.</p><p><strong>Conclusion: </strong>Our results suggest that using nanocurcumin and crocin separately in culturing MSCs can be considered proliferative agents to prepare the more advantageous tool for cell therapies. However, more <i>in vitro</i> and preclinical research is needed in this area.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/IJBMS.2024.74397.16197\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2024.74397.16197","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Stimulating effect of nanocurcumin and crocin on proliferation and pluripotency of bone marrow-derived mesenchymal stem cells.
Objectives: Enhancement of proliferation, pluripotency, and self-renewal capacity as the unique features of MSCs can improve their therapeutic potential to regenerate tissues. In this context, crocin and curcumin, carotenoid compounds with outstanding medicinal properties, could be promising for cell protection and growth. This study aimed to evaluate the impact of nanocurcumin and crocin on BM-MSCs proliferation and pluripotency in vitro.
Materials and methods: BM-MSC were isolated from the iliac crest of SCI patients who were candidates for stem cell therapy. The effect of crocin and nanocurcumin on MSC proliferation was evaluated using MTT and PDT assay. The percentage of apoptotic MSCs was measured by flow cytometry. Furthermore, mRNA and protein expression of OCT4 and SOX2 as the proliferation and self-renewal related genes were quantified by real-time PCR and western blotting, respectively.
Results: Our findings demonstrated that only low concentrations of nanocurcumin (0.3 and 0.7 µM) and crocin (2.5 5 µM) significantly affected MSCs proliferation and protected them from apoptosis. Also, crocin and nanocurcumin at low doses caused an elevation in the mRNA and protein expression levels of OCT4 and SOX2 genes. In contrast, high concentrations decreased the survival of MSCs and led to increased apoptosis compared with the untreated group.
Conclusion: Our results suggest that using nanocurcumin and crocin separately in culturing MSCs can be considered proliferative agents to prepare the more advantageous tool for cell therapies. However, more in vitro and preclinical research is needed in this area.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.