使用 ChatGPT 进行系统综述:教程。

IF 1.4 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Minerva cardiology and angiology Pub Date : 2024-07-26 DOI:10.23736/S2724-5683.24.06568-2
Lefteris Teperikidis, Aristi Boulmpou, Christodoulos Papadopoulos, Giuseppe Biondi-Zoccai
{"title":"使用 ChatGPT 进行系统综述:教程。","authors":"Lefteris Teperikidis, Aristi Boulmpou, Christodoulos Papadopoulos, Giuseppe Biondi-Zoccai","doi":"10.23736/S2724-5683.24.06568-2","DOIUrl":null,"url":null,"abstract":"<p><p>This tutorial provides a comprehensive guide on leveraging ChatGPT for systematic literature reviews, leveraging actual applications in cardiovascular research. Systematic reviews, while essential, are resource-intensive, and ChatGPT offers a potential solution to streamline the process. The tutorial covers the entire review process, from preparation to finalization. In the preparation phase, ChatGPT assists in defining research questions and generating search strings. During the screening phase, ChatGPT can efficiently screen titles and abstracts, processing multiple abstracts simultaneously. The tutorial also introduces an intermediate step of generating study summaries that leads to the generation of reliable data extraction tables. For assessing the risk of bias, ChatGPT can be prompted to perform these tasks. Using each tool's explanation document to generate an appropriate prompt is an efficient method of reliable risk of bias assessments using ChatGPT. However, users are cautioned about potential hallucinations in ChatGPT's outputs and the importance of manual validation. The tutorial emphasizes the need for vigilance, continuous refinement, and gaining experience with ChatGPT to ensure accurate and reliable results. The methods presented have been successfully tried in several projects, but they remain in nascent stages, with ample room for improvement and refinement.</p>","PeriodicalId":18668,"journal":{"name":"Minerva cardiology and angiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using ChatGPT to perform a systematic review: a tutorial.\",\"authors\":\"Lefteris Teperikidis, Aristi Boulmpou, Christodoulos Papadopoulos, Giuseppe Biondi-Zoccai\",\"doi\":\"10.23736/S2724-5683.24.06568-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This tutorial provides a comprehensive guide on leveraging ChatGPT for systematic literature reviews, leveraging actual applications in cardiovascular research. Systematic reviews, while essential, are resource-intensive, and ChatGPT offers a potential solution to streamline the process. The tutorial covers the entire review process, from preparation to finalization. In the preparation phase, ChatGPT assists in defining research questions and generating search strings. During the screening phase, ChatGPT can efficiently screen titles and abstracts, processing multiple abstracts simultaneously. The tutorial also introduces an intermediate step of generating study summaries that leads to the generation of reliable data extraction tables. For assessing the risk of bias, ChatGPT can be prompted to perform these tasks. Using each tool's explanation document to generate an appropriate prompt is an efficient method of reliable risk of bias assessments using ChatGPT. However, users are cautioned about potential hallucinations in ChatGPT's outputs and the importance of manual validation. The tutorial emphasizes the need for vigilance, continuous refinement, and gaining experience with ChatGPT to ensure accurate and reliable results. The methods presented have been successfully tried in several projects, but they remain in nascent stages, with ample room for improvement and refinement.</p>\",\"PeriodicalId\":18668,\"journal\":{\"name\":\"Minerva cardiology and angiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerva cardiology and angiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23736/S2724-5683.24.06568-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva cardiology and angiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S2724-5683.24.06568-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本教程通过心血管研究中的实际应用,全面指导如何利用 ChatGPT 进行系统性文献综述。系统性综述虽然必不可少,但却是资源密集型的,而 ChatGPT 为简化这一过程提供了潜在的解决方案。教程涵盖了从准备到最终完成的整个综述过程。在准备阶段,ChatGPT 可以帮助确定研究问题并生成检索字符串。在筛选阶段,ChatGPT 可以高效地筛选标题和摘要,同时处理多篇摘要。教程还介绍了生成研究摘要的中间步骤,从而生成可靠的数据提取表。在评估偏倚风险时,可以提示 ChatGPT 执行这些任务。使用每个工具的说明文档生成适当的提示是使用 ChatGPT 进行可靠的偏倚风险评估的有效方法。不过,我们也提醒用户注意 ChatGPT 输出中可能出现的幻觉以及人工验证的重要性。本教程强调了提高警惕、不断改进和积累 ChatGPT 使用经验的必要性,以确保结果准确可靠。所介绍的方法已在多个项目中成功试用,但仍处于初级阶段,有很大的改进和完善空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using ChatGPT to perform a systematic review: a tutorial.

This tutorial provides a comprehensive guide on leveraging ChatGPT for systematic literature reviews, leveraging actual applications in cardiovascular research. Systematic reviews, while essential, are resource-intensive, and ChatGPT offers a potential solution to streamline the process. The tutorial covers the entire review process, from preparation to finalization. In the preparation phase, ChatGPT assists in defining research questions and generating search strings. During the screening phase, ChatGPT can efficiently screen titles and abstracts, processing multiple abstracts simultaneously. The tutorial also introduces an intermediate step of generating study summaries that leads to the generation of reliable data extraction tables. For assessing the risk of bias, ChatGPT can be prompted to perform these tasks. Using each tool's explanation document to generate an appropriate prompt is an efficient method of reliable risk of bias assessments using ChatGPT. However, users are cautioned about potential hallucinations in ChatGPT's outputs and the importance of manual validation. The tutorial emphasizes the need for vigilance, continuous refinement, and gaining experience with ChatGPT to ensure accurate and reliable results. The methods presented have been successfully tried in several projects, but they remain in nascent stages, with ample room for improvement and refinement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerva cardiology and angiology
Minerva cardiology and angiology CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
2.60
自引率
18.80%
发文量
118
期刊最新文献
Cerebrovascular events after perioperative paroxysmal atrial fibrillation in patients undergoing aortic valve replacement. Discovery of five diagnostic biomarkers associated with immune cell infiltration in cases of acute myocardial infarction. Arterial vascular complications predictive score in extrasystolic arrhythmia "EX-prognosis". Diagnostic and prognostic significance of serum lncRNA MBNL1-AS1 expression in patients with atherosclerosis. Diagnostic value of combined detection of serum neuron-specific enolase and homocysteine in patients with coronary atherosclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1