通过平面外反阻尼磁子转矩实现垂直磁化的确定性切换。

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-07-24 DOI:10.1038/s41565-024-01741-y
Fei Wang, Guoyi Shi, Dongsheng Yang, Hui Ru Tan, Chenhui Zhang, Jiayu Lei, Yuchen Pu, Shuhan Yang, Anjan Soumyanarayanan, Mehrdad Elyasi, Hyunsoo Yang
{"title":"通过平面外反阻尼磁子转矩实现垂直磁化的确定性切换。","authors":"Fei Wang, Guoyi Shi, Dongsheng Yang, Hui Ru Tan, Chenhui Zhang, Jiayu Lei, Yuchen Pu, Shuhan Yang, Anjan Soumyanarayanan, Mehrdad Elyasi, Hyunsoo Yang","doi":"10.1038/s41565-024-01741-y","DOIUrl":null,"url":null,"abstract":"<p><p>Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons' movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe<sub>2</sub>/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of -8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe<sub>2</sub>/WTe<sub>2</sub>/NiO/CoFeB heterostructures compared to Bi<sub>2</sub>Te<sub>3</sub>/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques.\",\"authors\":\"Fei Wang, Guoyi Shi, Dongsheng Yang, Hui Ru Tan, Chenhui Zhang, Jiayu Lei, Yuchen Pu, Shuhan Yang, Anjan Soumyanarayanan, Mehrdad Elyasi, Hyunsoo Yang\",\"doi\":\"10.1038/s41565-024-01741-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons' movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe<sub>2</sub>/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of -8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe<sub>2</sub>/WTe<sub>2</sub>/NiO/CoFeB heterostructures compared to Bi<sub>2</sub>Te<sub>3</sub>/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-024-01741-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01741-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁矩(或磁子)的自旋波激发可在绝缘磁性材料中传输自旋角动量。这一特性使磁子设备有别于传统的电子设备,后者的功耗来自电子运动。最近,磁子力矩已被用于在外部磁场存在的情况下切换垂直磁化。在这里,我们介绍了一种由 WTe2/反铁磁绝缘体 NiO/铁磁体 CoFeB 异质结构组成的材料系统,它可以实现垂直磁化的无磁场切换。磁子电流相对于样品平面的自旋极化倾斜度为-8.5°,在保持其原始极化方向的同时穿过 25 纳米厚的多晶氧化镍层,随后在铁磁层上施加平面外抗阻尼磁子力矩。利用这种机制,我们实现了 PtTe2/WTe2/NiO/CoFeB 异质结构的功耗比 Bi2Te3/NiO/CoFeB 对照样品降低 190 倍,而 Bi2Te3/NiO/CoFeB 对照样品只表现出平面内的磁子力矩。我们的无磁场演示有助于实现全电、低功耗、垂直磁化开关器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques.

Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons' movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe2/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of -8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe2/WTe2/NiO/CoFeB heterostructures compared to Bi2Te3/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
3D printed photonic crystals with a complete bandgap in the visible range Earth-abundant Li-ion cathode materials with nanoengineered microstructures Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes A cuproptosis nanocapsule for cancer radiotherapy Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1