光频率下的电可调时空元表面。

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-07-24 DOI:10.1038/s41565-024-01728-9
Jared Sisler, Prachi Thureja, Meir Y Grajower, Ruzan Sokhoyan, Ivy Huang, Harry A Atwater
{"title":"光频率下的电可调时空元表面。","authors":"Jared Sisler, Prachi Thureja, Meir Y Grajower, Ruzan Sokhoyan, Ivy Huang, Harry A Atwater","doi":"10.1038/s41565-024-01728-9","DOIUrl":null,"url":null,"abstract":"<p><p>Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically tunable space-time metasurfaces at optical frequencies.\",\"authors\":\"Jared Sisler, Prachi Thureja, Meir Y Grajower, Ruzan Sokhoyan, Ivy Huang, Harry A Atwater\",\"doi\":\"10.1038/s41565-024-01728-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-024-01728-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01728-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有源元表面可通过改变亚波长散射体阵列的空间相位和振幅,对散射电磁波面进行动态操控,从而为出射光线注入动量。同样,对有源元表面进行周期性的时间调制,也能操纵光的输出频率。在这里,我们将空间调制与时间调制相结合,在波长为 1530 纳米的电调制反射元表面上产生并衍射出兆赫兹频率的边带光谱。使用定制波形进行时间调制可以设计边带频谱。通过在元表面施加空间相位梯度,我们可以衍射出选定的边带频率组合。将主动时间和空间变化结合起来,可以实现独特的光学功能,如混频、谐波光束转向或整形以及打破洛伦兹互易性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrically tunable space-time metasurfaces at optical frequencies.

Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
3D printed photonic crystals with a complete bandgap in the visible range Earth-abundant Li-ion cathode materials with nanoengineered microstructures Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes A cuproptosis nanocapsule for cancer radiotherapy Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1