{"title":"输送氧化铁磁性纳米颗粒的磁性纤维蛋白纳米纤维水凝胶可促进外周神经再生。","authors":"Juncong Hong, Dongze Wu, Haitao Wang, Zhe Gong, Xinxin Zhu, Fang Chen, Zihang Wang, Mingchen Zhang, Xiumei Wang, Xiangqian Fang, Shuhui Yang, Jinjin Zhu","doi":"10.1093/rb/rbae075","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. <i>In vitro</i> examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the <i>in vivo</i> imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration.\",\"authors\":\"Juncong Hong, Dongze Wu, Haitao Wang, Zhe Gong, Xinxin Zhu, Fang Chen, Zihang Wang, Mingchen Zhang, Xiumei Wang, Xiangqian Fang, Shuhui Yang, Jinjin Zhu\",\"doi\":\"10.1093/rb/rbae075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. <i>In vitro</i> examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the <i>in vivo</i> imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae075\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae075","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration.
Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. In vitro examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the in vivo imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.