{"title":"温度调节负超螺旋,从而调节减数分裂交叉和染色体组织。","authors":"Yingjin Tan, Taicong Tan, Shuxian Zhang, Bo Li, Beiyi Chen, Xu Zhou, Ying Wang, Xiao Yang, Binyuan Zhai, Qilai Huang, Liangran Zhang, Shunxin Wang","doi":"10.1007/s11427-024-2671-1","DOIUrl":null,"url":null,"abstract":"<p><p>Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2426-2443"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization.\",\"authors\":\"Yingjin Tan, Taicong Tan, Shuxian Zhang, Bo Li, Beiyi Chen, Xu Zhou, Ying Wang, Xiao Yang, Binyuan Zhai, Qilai Huang, Liangran Zhang, Shunxin Wang\",\"doi\":\"10.1007/s11427-024-2671-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.</p>\",\"PeriodicalId\":21576,\"journal\":{\"name\":\"Science China Life Sciences\",\"volume\":\" \",\"pages\":\"2426-2443\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-024-2671-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2671-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization.
Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.