生物启发纳米系统的精准纳米医学:间充质干细胞的最新趋势和挑战:靶向纳米治疗中的膜包生物工程纳米载体。

IF 6.8 Q1 TOXICOLOGY Journal of Xenobiotics Pub Date : 2024-06-24 DOI:10.3390/jox14030047
Mirza Salman Baig, Anas Ahmad, Rijawan Rajjak Pathan, Rakesh Kumar Mishra
{"title":"生物启发纳米系统的精准纳米医学:间充质干细胞的最新趋势和挑战:靶向纳米治疗中的膜包生物工程纳米载体。","authors":"Mirza Salman Baig, Anas Ahmad, Rijawan Rajjak Pathan, Rakesh Kumar Mishra","doi":"10.3390/jox14030047","DOIUrl":null,"url":null,"abstract":"<p><p>In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"827-872"},"PeriodicalIF":6.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270309/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics.\",\"authors\":\"Mirza Salman Baig, Anas Ahmad, Rijawan Rajjak Pathan, Rakesh Kumar Mishra\",\"doi\":\"10.3390/jox14030047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"14 3\",\"pages\":\"827-872\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270309/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox14030047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14030047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,纳米载体的配制和开发已进入更广泛的领域,并为其临床前和临床应用开辟了各种途径。特别是,基于细胞膜的纳米制剂的配制超越了与治疗化合物的原始或游离形式相关的限制和约束,绕过了各种物理化学和免疫学障碍,包括但不限于系统障碍、微环境障碍和其他细胞或亚细胞障碍--这些障碍在各种疾病和患者群体中具有很大的异质性。基于间充质细胞膜的精准疗法克服了这些给药限制,这些干预措施显著提高了疗效。然而,纳米载体的配制和开发仍侧重于优化给药范例,采用 "一刀切 "的解决方案。基于间充质干细胞膜的纳米载体已被设计成高度多样化的形式,这些载体正在进行优化,以便以更多更好的个性化模式输送药物,从而进入精准和个性化纳米医学领域。在本综述中,我们收录了一些先进的纳米载体,这些载体的设计和应用既有非个性化的,也有精准的,可用于改进精准纳米疗法。在本报告中,作者重点介绍了干细胞膜基纳米粒子概念的其他各方面进展,这些进展可以克服药物输送和纳米医学中的若干障碍和壁垒。有人认为,在充分知情的情况下设计这些纳米载体,将显著提高治疗载荷输送应用的疗效。这些方法还能为基于间充质干细胞的纳米载体的个性化治疗应用提供量身定制的设计,最终改善患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics.

In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
期刊最新文献
Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung-Gut Axis and Beyond. Environmental Stress-Induced Alterations in Embryo Developmental Morphokinetics. Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications. Acute Quetiapine Intoxication: Relationship Between Ingested Dose, Serum Concentration and Clinical Presentation-Structured Literature Review and Analysis. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1