{"title":"通过基于 AuNPs 初始注入半径的扩散分析优化光热治疗条件。","authors":"Donghyuk Kim, Hyunjung Kim","doi":"10.1002/cnm.3854","DOIUrl":null,"url":null,"abstract":"<p>Anticancer treatment is performed in various ways, and photothermal therapy (PTT) is gaining traction from a noninvasive treatment perspective. PTT is a treatment technique based on the photothermal effect that kills tumors by increasing their temperature. In this study, gold nanoparticles (AuNPs), which are photothermal agents, were used in numerical simulations to determine the PTT effect by considering diffusion induced changes in the distribution area of the AuNPs. The treatment effect was confirmed by varying the initial injection radius of AuNPs represented by the injection volume, the elapsed time after injection of AuNPs, and the laser intensity. The degree of maintenance of the apoptotic temperature band in the tumor was quantitatively analyzed by the apoptotic variable. Ultimately, if the initial injection radius of AuNPs is 0.7 mm or less, the optimal time to start treatment is 240 min after injection, and for 1.0 and 1.2 mm, it is optimal to start treatment when the elapsed time after injection is 90 and 30 min, respectively. This study identified the optimal treatment conditions for dosage of AuNPs and treatment start time in PTT using AuNPs, which will serve as a reference point for future PTT studies.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3854","citationCount":"0","resultStr":"{\"title\":\"Optimization of photothermal therapy conditions through diffusion analysis based on the initial injection radius of AuNPs\",\"authors\":\"Donghyuk Kim, Hyunjung Kim\",\"doi\":\"10.1002/cnm.3854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anticancer treatment is performed in various ways, and photothermal therapy (PTT) is gaining traction from a noninvasive treatment perspective. PTT is a treatment technique based on the photothermal effect that kills tumors by increasing their temperature. In this study, gold nanoparticles (AuNPs), which are photothermal agents, were used in numerical simulations to determine the PTT effect by considering diffusion induced changes in the distribution area of the AuNPs. The treatment effect was confirmed by varying the initial injection radius of AuNPs represented by the injection volume, the elapsed time after injection of AuNPs, and the laser intensity. The degree of maintenance of the apoptotic temperature band in the tumor was quantitatively analyzed by the apoptotic variable. Ultimately, if the initial injection radius of AuNPs is 0.7 mm or less, the optimal time to start treatment is 240 min after injection, and for 1.0 and 1.2 mm, it is optimal to start treatment when the elapsed time after injection is 90 and 30 min, respectively. This study identified the optimal treatment conditions for dosage of AuNPs and treatment start time in PTT using AuNPs, which will serve as a reference point for future PTT studies.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3854\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3854","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Optimization of photothermal therapy conditions through diffusion analysis based on the initial injection radius of AuNPs
Anticancer treatment is performed in various ways, and photothermal therapy (PTT) is gaining traction from a noninvasive treatment perspective. PTT is a treatment technique based on the photothermal effect that kills tumors by increasing their temperature. In this study, gold nanoparticles (AuNPs), which are photothermal agents, were used in numerical simulations to determine the PTT effect by considering diffusion induced changes in the distribution area of the AuNPs. The treatment effect was confirmed by varying the initial injection radius of AuNPs represented by the injection volume, the elapsed time after injection of AuNPs, and the laser intensity. The degree of maintenance of the apoptotic temperature band in the tumor was quantitatively analyzed by the apoptotic variable. Ultimately, if the initial injection radius of AuNPs is 0.7 mm or less, the optimal time to start treatment is 240 min after injection, and for 1.0 and 1.2 mm, it is optimal to start treatment when the elapsed time after injection is 90 and 30 min, respectively. This study identified the optimal treatment conditions for dosage of AuNPs and treatment start time in PTT using AuNPs, which will serve as a reference point for future PTT studies.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.