基于姜黄素的还原反应性多药纳米平台用于肿瘤靶向治疗

Ziyi Zhang, Jinyuan Tian, Xiaoqing Xu, Wei Shi, Yajuan Qi, Zhanjun Liu
{"title":"基于姜黄素的还原反应性多药纳米平台用于肿瘤靶向治疗","authors":"Ziyi Zhang, Jinyuan Tian, Xiaoqing Xu, Wei Shi, Yajuan Qi, Zhanjun Liu","doi":"10.2174/0115672018314506240723080113","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Polymer prodrug nanoparticles have become an emerging drug delivery system in cancer therapy due to their high drug loading. However, their poor drug release and lack of tumor cell targeting limit their clinical application.</p><p><strong>Objective: </strong>This study aimed to prepare targeted and reduction-reactive polyprodrug nanocarriers based on curcumin (CUR) for co-delivery of doxorubicin (DOX), labeled as DOX/HAPCS NPs, and to investigate their anticancer activity.</p><p><strong>Methods: </strong>The polymer was synthesized and characterized by chemical method. The drug loading and drug release behavior of DOX and CUR in polymer nanoparticles were determined. Moreover, the antitumor effects of polymer nanoparticles were evaluated using an MTT experiment and tumor inhibition experiment, and the synergistic effect of co-delivered DOX and CUR was explored.</p><p><strong>Results: </strong>The particle size of DOX/HAPCS NPs was 152.5nm, and the potential was about -26.74 mV. The drug-carrying capacity of DOX and CUR was about 7.56% and 34.75%, respectively, indicating high drug-carrying capacity and good stability. DOX and CUR released over 90% within 24 hours in the tumor environment. Compared with free DOX, DOX/HAPCS NPs demonstrated significantly enhanced cell and tumor inhibitory effects (P&#60; 0.05) in vivo and in vitro and changed drug distribution to avoid toxic side effects on normal tissues. The combined index showed that DOX and CUR showed synergistic anticancer effects at a set ratio.</p><p><strong>Conclusion: </strong>The prepared reduction-responsive targeted polymer nanomedical DOX/HAPCS NPs exhibited a synergistic anti-cancer effect, with high drug loading capacity and the ability to release drugs in proportion, making it a promising polymer nanoparticle drug delivery system.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction-Responsive Polyprodrug Nanoplatform Based on Curcumin for Tumor-Targeted Therapy.\",\"authors\":\"Ziyi Zhang, Jinyuan Tian, Xiaoqing Xu, Wei Shi, Yajuan Qi, Zhanjun Liu\",\"doi\":\"10.2174/0115672018314506240723080113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Polymer prodrug nanoparticles have become an emerging drug delivery system in cancer therapy due to their high drug loading. However, their poor drug release and lack of tumor cell targeting limit their clinical application.</p><p><strong>Objective: </strong>This study aimed to prepare targeted and reduction-reactive polyprodrug nanocarriers based on curcumin (CUR) for co-delivery of doxorubicin (DOX), labeled as DOX/HAPCS NPs, and to investigate their anticancer activity.</p><p><strong>Methods: </strong>The polymer was synthesized and characterized by chemical method. The drug loading and drug release behavior of DOX and CUR in polymer nanoparticles were determined. Moreover, the antitumor effects of polymer nanoparticles were evaluated using an MTT experiment and tumor inhibition experiment, and the synergistic effect of co-delivered DOX and CUR was explored.</p><p><strong>Results: </strong>The particle size of DOX/HAPCS NPs was 152.5nm, and the potential was about -26.74 mV. The drug-carrying capacity of DOX and CUR was about 7.56% and 34.75%, respectively, indicating high drug-carrying capacity and good stability. DOX and CUR released over 90% within 24 hours in the tumor environment. Compared with free DOX, DOX/HAPCS NPs demonstrated significantly enhanced cell and tumor inhibitory effects (P&#60; 0.05) in vivo and in vitro and changed drug distribution to avoid toxic side effects on normal tissues. The combined index showed that DOX and CUR showed synergistic anticancer effects at a set ratio.</p><p><strong>Conclusion: </strong>The prepared reduction-responsive targeted polymer nanomedical DOX/HAPCS NPs exhibited a synergistic anti-cancer effect, with high drug loading capacity and the ability to release drugs in proportion, making it a promising polymer nanoparticle drug delivery system.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018314506240723080113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018314506240723080113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:聚合物原药纳米颗粒因其高载药量而成为癌症治疗中一种新兴的给药系统。然而,其药物释放性差和缺乏肿瘤细胞靶向性限制了其临床应用:本研究旨在制备基于姜黄素(CUR)的靶向性还原反应聚药纳米载体,用于联合递送多柔比星(DOX),标记为 DOX/HAPCS NPs,并研究其抗癌活性:方法:采用化学方法合成并表征了聚合物。方法:采用化学方法合成了聚合物并对其进行了表征,测定了聚合物纳米颗粒中 DOX 和 CUR 的载药量和药物释放行为。此外,还利用 MTT 实验和肿瘤抑制实验评估了聚合物纳米颗粒的抗肿瘤效果,并探讨了 DOX 和 CUR 共给药的协同效应:结果:DOX/HAPCS NPs的粒径为152.5nm,电位约为-26.74 mV。DOX和CUR的载药量分别约为7.56%和34.75%,显示出较高的载药量和良好的稳定性。DOX和CUR在肿瘤环境中24小时内的释放率超过90%。与游离 DOX 相比,DOX/HAPCS NPs 在体内和体外对细胞和肿瘤的抑制作用明显增强(P< 0.05),并改变了药物分布,避免了对正常组织的毒副作用。综合指标显示,DOX 和 CUR 在一定比例下具有协同抗癌作用:制备的还原响应靶向聚合物纳米药物 DOX/HAPCS NPs 具有协同抗癌作用,载药量大,能按比例释放药物,是一种很有前景的聚合物纳米颗粒给药系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduction-Responsive Polyprodrug Nanoplatform Based on Curcumin for Tumor-Targeted Therapy.

Introduction: Polymer prodrug nanoparticles have become an emerging drug delivery system in cancer therapy due to their high drug loading. However, their poor drug release and lack of tumor cell targeting limit their clinical application.

Objective: This study aimed to prepare targeted and reduction-reactive polyprodrug nanocarriers based on curcumin (CUR) for co-delivery of doxorubicin (DOX), labeled as DOX/HAPCS NPs, and to investigate their anticancer activity.

Methods: The polymer was synthesized and characterized by chemical method. The drug loading and drug release behavior of DOX and CUR in polymer nanoparticles were determined. Moreover, the antitumor effects of polymer nanoparticles were evaluated using an MTT experiment and tumor inhibition experiment, and the synergistic effect of co-delivered DOX and CUR was explored.

Results: The particle size of DOX/HAPCS NPs was 152.5nm, and the potential was about -26.74 mV. The drug-carrying capacity of DOX and CUR was about 7.56% and 34.75%, respectively, indicating high drug-carrying capacity and good stability. DOX and CUR released over 90% within 24 hours in the tumor environment. Compared with free DOX, DOX/HAPCS NPs demonstrated significantly enhanced cell and tumor inhibitory effects (P< 0.05) in vivo and in vitro and changed drug distribution to avoid toxic side effects on normal tissues. The combined index showed that DOX and CUR showed synergistic anticancer effects at a set ratio.

Conclusion: The prepared reduction-responsive targeted polymer nanomedical DOX/HAPCS NPs exhibited a synergistic anti-cancer effect, with high drug loading capacity and the ability to release drugs in proportion, making it a promising polymer nanoparticle drug delivery system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluconazole-loaded Hyaluronic Acid-modified Transfersomal Hydrogels Containing D-panthenol for Ocular Delivery in Fungal Keratitis Management. Nanostructured Lipid Carrier-based Topical Gels as Novel Drug Delivery System: A Comprehensive Overview. Improved Therapeutic Efficacy: Liposome-Coated Mesoporous Silica Nanoparticles Delivering Thymoquinone to MCF-7 Cells. Local Delivery of Ginger Extract via a Nanofibrous Membrane Suppresses Human Skin Melanoma B16F10 Cells Growth via Targeting Ras/ERK and PI3K/AKT Signaling Pathways: An In vitro Study. Alleviation of Tumor Invasion by the Development of Natural Polymerbased Low-risk Chemotherapeutic Systems - review on the Malignant Carcinoma Treatments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1