Van T. Nguyen, Biruk T. Birhanu, Vega Miguel-Ruano, Choon Kim, Mayte Batuecas, Jingdong Yang, Amr M. El-Araby, Eva Jiménez-Faraco, Valerie A. Schroeder, Alejandra Alba, Neha Rana, Safaa Sader, Caitlyn A. Thomas, Rhona Feltzer, Mijoon Lee, Jed F. Fisher, Juan A. Hermoso, Mayland Chang, Shahriar Mobashery
{"title":"恢复耐甲氧西林金黄色葡萄球菌对β-内酰胺类抗生素的敏感性","authors":"Van T. Nguyen, Biruk T. Birhanu, Vega Miguel-Ruano, Choon Kim, Mayte Batuecas, Jingdong Yang, Amr M. El-Araby, Eva Jiménez-Faraco, Valerie A. Schroeder, Alejandra Alba, Neha Rana, Safaa Sader, Caitlyn A. Thomas, Rhona Feltzer, Mijoon Lee, Jed F. Fisher, Juan A. Hermoso, Mayland Chang, Shahriar Mobashery","doi":"10.1038/s41589-024-01688-0","DOIUrl":null,"url":null,"abstract":"<p>Infections by <i>Staphylococcus aureus</i> have been treated historically with β-lactam antibiotics. However, these antibiotics have become obsolete in methicillin-resistant <i>S. aureus</i> by acquisition of the <i>bla</i> and <i>mec</i> operons. The presence of the β-lactam antibiotic is detected by the sensor domains of BlaR and/or MecR, and the information is transmitted to the cytoplasm, resulting in derepression of the antibiotic-resistance genes. We hypothesized that inhibition of the sensor domain would shut down this response system, and β-lactam susceptibility would be restored. An in silico search of 11 million compounds led to a benzimidazole-based hit and, ultimately, to the boronate <b>4</b>. The X-ray structure of <b>4</b> is covalently engaged with the active-site serine of BlaR. Compound <b>4</b> potentiates by 16- to 4,096-fold the activities of oxacillin and of meropenem against methicillin-resistant <i>S. aureus</i> strains. The combination of <b>4</b> with oxacillin or meropenem shows efficacy in infected mice, validating the strategy.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"66 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restoring susceptibility to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus\",\"authors\":\"Van T. Nguyen, Biruk T. Birhanu, Vega Miguel-Ruano, Choon Kim, Mayte Batuecas, Jingdong Yang, Amr M. El-Araby, Eva Jiménez-Faraco, Valerie A. Schroeder, Alejandra Alba, Neha Rana, Safaa Sader, Caitlyn A. Thomas, Rhona Feltzer, Mijoon Lee, Jed F. Fisher, Juan A. Hermoso, Mayland Chang, Shahriar Mobashery\",\"doi\":\"10.1038/s41589-024-01688-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infections by <i>Staphylococcus aureus</i> have been treated historically with β-lactam antibiotics. However, these antibiotics have become obsolete in methicillin-resistant <i>S. aureus</i> by acquisition of the <i>bla</i> and <i>mec</i> operons. The presence of the β-lactam antibiotic is detected by the sensor domains of BlaR and/or MecR, and the information is transmitted to the cytoplasm, resulting in derepression of the antibiotic-resistance genes. We hypothesized that inhibition of the sensor domain would shut down this response system, and β-lactam susceptibility would be restored. An in silico search of 11 million compounds led to a benzimidazole-based hit and, ultimately, to the boronate <b>4</b>. The X-ray structure of <b>4</b> is covalently engaged with the active-site serine of BlaR. Compound <b>4</b> potentiates by 16- to 4,096-fold the activities of oxacillin and of meropenem against methicillin-resistant <i>S. aureus</i> strains. The combination of <b>4</b> with oxacillin or meropenem shows efficacy in infected mice, validating the strategy.</p><figure></figure>\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-024-01688-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01688-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Restoring susceptibility to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus
Infections by Staphylococcus aureus have been treated historically with β-lactam antibiotics. However, these antibiotics have become obsolete in methicillin-resistant S. aureus by acquisition of the bla and mec operons. The presence of the β-lactam antibiotic is detected by the sensor domains of BlaR and/or MecR, and the information is transmitted to the cytoplasm, resulting in derepression of the antibiotic-resistance genes. We hypothesized that inhibition of the sensor domain would shut down this response system, and β-lactam susceptibility would be restored. An in silico search of 11 million compounds led to a benzimidazole-based hit and, ultimately, to the boronate 4. The X-ray structure of 4 is covalently engaged with the active-site serine of BlaR. Compound 4 potentiates by 16- to 4,096-fold the activities of oxacillin and of meropenem against methicillin-resistant S. aureus strains. The combination of 4 with oxacillin or meropenem shows efficacy in infected mice, validating the strategy.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.