温度挖掘促进机器学习电池热化学预测

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-09-18 DOI:10.1016/j.joule.2024.07.002
Yu Wang , Xuning Feng , Dongxu Guo , Hungjen Hsu , Junxian Hou , Fangshu Zhang , Chengshan Xu , Xiang Chen , Li Wang , Qiang Zhang , Minggao Ouyang
{"title":"温度挖掘促进机器学习电池热化学预测","authors":"Yu Wang ,&nbsp;Xuning Feng ,&nbsp;Dongxu Guo ,&nbsp;Hungjen Hsu ,&nbsp;Junxian Hou ,&nbsp;Fangshu Zhang ,&nbsp;Chengshan Xu ,&nbsp;Xiang Chen ,&nbsp;Li Wang ,&nbsp;Qiang Zhang ,&nbsp;Minggao Ouyang","doi":"10.1016/j.joule.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Advancing battery technologies requires precise predictions of thermochemical reactions among multiple components to efficiently exploit the stored energy and conduct thermal management. Recently, machine learning (ML) promised to address this complex thermochemical prediction task; however, it failed due to the huge gap between high problem complexity and extremely limited experimental data available for model training. Here, we innovate and validate the temperature excavation (TE) method that interprets the kinetic preferences of thermochemical reactions within minimal experiments into millions of training data. With the help of the TE method, we build the first universally applicable battery thermal runaway model, which achieves high prediction accuracy across a 500°C range on 15 distinct commercial and advanced chemistries with different battery formats and covers all normal working conditions. The TE method also demonstrates broad adaptability and training stability on various ML algorithms, opening new interdisciplinary opportunities for ML in thermochemistry and all thermal-related studies.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2639-2651"},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature excavation to boost machine learning battery thermochemical predictions\",\"authors\":\"Yu Wang ,&nbsp;Xuning Feng ,&nbsp;Dongxu Guo ,&nbsp;Hungjen Hsu ,&nbsp;Junxian Hou ,&nbsp;Fangshu Zhang ,&nbsp;Chengshan Xu ,&nbsp;Xiang Chen ,&nbsp;Li Wang ,&nbsp;Qiang Zhang ,&nbsp;Minggao Ouyang\",\"doi\":\"10.1016/j.joule.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advancing battery technologies requires precise predictions of thermochemical reactions among multiple components to efficiently exploit the stored energy and conduct thermal management. Recently, machine learning (ML) promised to address this complex thermochemical prediction task; however, it failed due to the huge gap between high problem complexity and extremely limited experimental data available for model training. Here, we innovate and validate the temperature excavation (TE) method that interprets the kinetic preferences of thermochemical reactions within minimal experiments into millions of training data. With the help of the TE method, we build the first universally applicable battery thermal runaway model, which achieves high prediction accuracy across a 500°C range on 15 distinct commercial and advanced chemistries with different battery formats and covers all normal working conditions. The TE method also demonstrates broad adaptability and training stability on various ML algorithms, opening new interdisciplinary opportunities for ML in thermochemistry and all thermal-related studies.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 9\",\"pages\":\"Pages 2639-2651\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124003040\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003040","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电池技术的发展需要对多个组件之间的热化学反应进行精确预测,以便有效利用存储的能量并进行热管理。最近,机器学习(ML)有望解决这一复杂的热化学预测任务;然而,由于问题复杂性高,而可用于模型训练的实验数据极其有限,两者之间存在巨大差距,机器学习(ML)失败了。在此,我们创新并验证了温度挖掘(TE)方法,该方法能在数百万个训练数据中,以最少的实验解释热化学反应的动力学偏好。在 TE 方法的帮助下,我们建立了第一个普遍适用的电池热失控模型,该模型在 500°C 范围内对 15 种不同的商业和先进化学物质以及不同的电池格式实现了高预测精度,并涵盖了所有正常工作条件。TE 方法还展示了对各种 ML 算法的广泛适应性和训练稳定性,为热化学和所有热相关研究中的 ML 开辟了新的跨学科机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature excavation to boost machine learning battery thermochemical predictions

Advancing battery technologies requires precise predictions of thermochemical reactions among multiple components to efficiently exploit the stored energy and conduct thermal management. Recently, machine learning (ML) promised to address this complex thermochemical prediction task; however, it failed due to the huge gap between high problem complexity and extremely limited experimental data available for model training. Here, we innovate and validate the temperature excavation (TE) method that interprets the kinetic preferences of thermochemical reactions within minimal experiments into millions of training data. With the help of the TE method, we build the first universally applicable battery thermal runaway model, which achieves high prediction accuracy across a 500°C range on 15 distinct commercial and advanced chemistries with different battery formats and covers all normal working conditions. The TE method also demonstrates broad adaptability and training stability on various ML algorithms, opening new interdisciplinary opportunities for ML in thermochemistry and all thermal-related studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1