Jia Bao, Longhui Shen, Hongying Liu, Bin Guo, Zhaoyu Sun
{"title":"海森堡模型 $J_{1}-J_{2}$ 内基态和第一激发态混合物的非局域性。","authors":"Jia Bao, Longhui Shen, Hongying Liu, Bin Guo, Zhaoyu Sun","doi":"10.1088/1361-648X/ad682a","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate both bipartite and multipartite nonlocality in theJ1-J2Heisenberg model. Bipartite nonlocality is measured by the Clauser-Horne-Shimony-Holt inequality, while multipartite nonlocality is explored through Bell-type inequalities. Our findings reveal that neither ground-state nor full thermal-state nonlocality reliably characterizes quantum phase transitions (QPTs). However, we uncover that the mixed-state nonlocality of the ground and first excited states exhibits distinctive characteristics applicable to both bipartite and multipartite scenarios. We also demonstrate how mixed-state quantum correlation behaviors depend on varying temperature regimes. In the bipartite case, we observe a phenomenon known as 'correlation reversal' with increasing temperature, a previously unreported occurrence in other models. For the multipartite case, the ability to signify phase transitions is significantly enhanced as the temperature rises. Furthermore, we discover a linear scaling effect that provides valuable insights for extrapolating QPTs in the thermodynamic limit asN→∞. Additionally, we identify the critical temperature at which mixed-state nonlocality becomes a reliable indicator of phase transitions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocality of mixtures of the ground and first excited states withinJ1-J2Heisenberg model.\",\"authors\":\"Jia Bao, Longhui Shen, Hongying Liu, Bin Guo, Zhaoyu Sun\",\"doi\":\"10.1088/1361-648X/ad682a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate both bipartite and multipartite nonlocality in theJ1-J2Heisenberg model. Bipartite nonlocality is measured by the Clauser-Horne-Shimony-Holt inequality, while multipartite nonlocality is explored through Bell-type inequalities. Our findings reveal that neither ground-state nor full thermal-state nonlocality reliably characterizes quantum phase transitions (QPTs). However, we uncover that the mixed-state nonlocality of the ground and first excited states exhibits distinctive characteristics applicable to both bipartite and multipartite scenarios. We also demonstrate how mixed-state quantum correlation behaviors depend on varying temperature regimes. In the bipartite case, we observe a phenomenon known as 'correlation reversal' with increasing temperature, a previously unreported occurrence in other models. For the multipartite case, the ability to signify phase transitions is significantly enhanced as the temperature rises. Furthermore, we discover a linear scaling effect that provides valuable insights for extrapolating QPTs in the thermodynamic limit asN→∞. Additionally, we identify the critical temperature at which mixed-state nonlocality becomes a reliable indicator of phase transitions.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad682a\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad682a","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Nonlocality of mixtures of the ground and first excited states withinJ1-J2Heisenberg model.
We investigate both bipartite and multipartite nonlocality in theJ1-J2Heisenberg model. Bipartite nonlocality is measured by the Clauser-Horne-Shimony-Holt inequality, while multipartite nonlocality is explored through Bell-type inequalities. Our findings reveal that neither ground-state nor full thermal-state nonlocality reliably characterizes quantum phase transitions (QPTs). However, we uncover that the mixed-state nonlocality of the ground and first excited states exhibits distinctive characteristics applicable to both bipartite and multipartite scenarios. We also demonstrate how mixed-state quantum correlation behaviors depend on varying temperature regimes. In the bipartite case, we observe a phenomenon known as 'correlation reversal' with increasing temperature, a previously unreported occurrence in other models. For the multipartite case, the ability to signify phase transitions is significantly enhanced as the temperature rises. Furthermore, we discover a linear scaling effect that provides valuable insights for extrapolating QPTs in the thermodynamic limit asN→∞. Additionally, we identify the critical temperature at which mixed-state nonlocality becomes a reliable indicator of phase transitions.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.