{"title":"将磁子用作量子技术平台:一个视角。","authors":"Pratap Kumar Pal, Amrit Kumar Mondal, Anjan Barman","doi":"10.1088/1361-648X/ad6828","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional electronics rely on charge currents for controlling and transmitting information, resulting in energy dissipation due to electron scattering. Over the last decade, magnons, quanta of spin waves, have emerged as a promising alternative. This perspective article provides a brief review of experimental and theoretical studies on quantum and hybrid magnonics resulting from the interaction of magnons with other quasiparticles in the GHz frequency range, offering insights into the development of functional magnonic devices. In this process, we discuss recent advancements in the quantum theory of magnons and their coupling with various types of qubits in nanoscale ferromagnets, antiferromagnets, synthetic antiferromagnets, and magnetic bulk systems. Additionally, we explore potential technological platforms that enable new functionalities in magnonics, concluding with future directions and emerging phenomena in this burgeoning field.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using magnons as a quantum technology platform: a perspective.\",\"authors\":\"Pratap Kumar Pal, Amrit Kumar Mondal, Anjan Barman\",\"doi\":\"10.1088/1361-648X/ad6828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional electronics rely on charge currents for controlling and transmitting information, resulting in energy dissipation due to electron scattering. Over the last decade, magnons, quanta of spin waves, have emerged as a promising alternative. This perspective article provides a brief review of experimental and theoretical studies on quantum and hybrid magnonics resulting from the interaction of magnons with other quasiparticles in the GHz frequency range, offering insights into the development of functional magnonic devices. In this process, we discuss recent advancements in the quantum theory of magnons and their coupling with various types of qubits in nanoscale ferromagnets, antiferromagnets, synthetic antiferromagnets, and magnetic bulk systems. Additionally, we explore potential technological platforms that enable new functionalities in magnonics, concluding with future directions and emerging phenomena in this burgeoning field.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad6828\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad6828","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Using magnons as a quantum technology platform: a perspective.
Traditional electronics rely on charge currents for controlling and transmitting information, resulting in energy dissipation due to electron scattering. Over the last decade, magnons, quanta of spin waves, have emerged as a promising alternative. This perspective article provides a brief review of experimental and theoretical studies on quantum and hybrid magnonics resulting from the interaction of magnons with other quasiparticles in the GHz frequency range, offering insights into the development of functional magnonic devices. In this process, we discuss recent advancements in the quantum theory of magnons and their coupling with various types of qubits in nanoscale ferromagnets, antiferromagnets, synthetic antiferromagnets, and magnetic bulk systems. Additionally, we explore potential technological platforms that enable new functionalities in magnonics, concluding with future directions and emerging phenomena in this burgeoning field.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.