{"title":"为辨别说话人建立词汇音调模型","authors":"Ricky K W Chan, Bruce Xiao Wang","doi":"10.1177/00238309241261702","DOIUrl":null,"url":null,"abstract":"<p><p>Fundamental frequency (F0) has been widely studied and used in the context of speaker discrimination and forensic voice comparison casework, but most previous studies focused on long-term F0 statistics. Lexical tone, the linguistically structured and dynamic aspects of F0, has received much less research attention. A main methodological issue lies on how tonal F0 should be parameterized for the best speaker discrimination performance. This paper compares the speaker discriminatory performance of three approaches with lexical tone modeling: discrete cosine transform (DCT), polynomial curve fitting, and quantitative target approximation (qTA). Results show that using parameters based on DCT and polynomials led to similarly promising performance, whereas those based on qTA generally yielded relatively poor performance. Implications modeling surface tonal F0 and the underlying articulatory processes for speaker discrimination are discussed.</p>","PeriodicalId":51255,"journal":{"name":"Language and Speech","volume":" ","pages":"238309241261702"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Lexical Tones for Speaker Discrimination.\",\"authors\":\"Ricky K W Chan, Bruce Xiao Wang\",\"doi\":\"10.1177/00238309241261702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fundamental frequency (F0) has been widely studied and used in the context of speaker discrimination and forensic voice comparison casework, but most previous studies focused on long-term F0 statistics. Lexical tone, the linguistically structured and dynamic aspects of F0, has received much less research attention. A main methodological issue lies on how tonal F0 should be parameterized for the best speaker discrimination performance. This paper compares the speaker discriminatory performance of three approaches with lexical tone modeling: discrete cosine transform (DCT), polynomial curve fitting, and quantitative target approximation (qTA). Results show that using parameters based on DCT and polynomials led to similarly promising performance, whereas those based on qTA generally yielded relatively poor performance. Implications modeling surface tonal F0 and the underlying articulatory processes for speaker discrimination are discussed.</p>\",\"PeriodicalId\":51255,\"journal\":{\"name\":\"Language and Speech\",\"volume\":\" \",\"pages\":\"238309241261702\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language and Speech\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1177/00238309241261702\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language and Speech","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1177/00238309241261702","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Modeling Lexical Tones for Speaker Discrimination.
Fundamental frequency (F0) has been widely studied and used in the context of speaker discrimination and forensic voice comparison casework, but most previous studies focused on long-term F0 statistics. Lexical tone, the linguistically structured and dynamic aspects of F0, has received much less research attention. A main methodological issue lies on how tonal F0 should be parameterized for the best speaker discrimination performance. This paper compares the speaker discriminatory performance of three approaches with lexical tone modeling: discrete cosine transform (DCT), polynomial curve fitting, and quantitative target approximation (qTA). Results show that using parameters based on DCT and polynomials led to similarly promising performance, whereas those based on qTA generally yielded relatively poor performance. Implications modeling surface tonal F0 and the underlying articulatory processes for speaker discrimination are discussed.
期刊介绍:
Language and Speech is a peer-reviewed journal which provides an international forum for communication among researchers in the disciplines that contribute to our understanding of the production, perception, processing, learning, use, and disorders of speech and language. The journal accepts reports of original research in all these areas.