Olivia J Graham, Drew Harvell, Bart Christiaen, Jeff Gaeckle, Lillian R Aoki, Baylen Ratliff, Audrey Vinton, Brendan H Rappazzo, Tina Whitman
{"title":"为保护海草草甸的复原力把脉。","authors":"Olivia J Graham, Drew Harvell, Bart Christiaen, Jeff Gaeckle, Lillian R Aoki, Baylen Ratliff, Audrey Vinton, Brendan H Rappazzo, Tina Whitman","doi":"10.1093/icb/icae120","DOIUrl":null,"url":null,"abstract":"<p><p>Foundational habitats such as seagrasses and coral reefs are at severe risk globally from climate warming. Infectious disease associated with warming events is both a cause of decline and an indicator of stress in both habitats. Since new approaches are needed to detect refugia and design climate-smart networks of marine protected areas, we test the hypothesis that the health of eelgrass (Zostera marina) in temperate ecosystems can serve as a proxy indicative of higher resilience and help pinpoint refugia. Eelgrass meadows worldwide are at risk from environmental stressors, including climate warming and disease. Disease outbreaks of Labyrinthula zosterae are associated with recent, widespread declines in eelgrass meadows throughout the San Juan Islands, Washington, USA. Machine language learning, drone surveys, and molecular diagnostics reveal climate impacts on seagrass wasting disease prevalence (proportion of infected individuals) and severity (proportion of infected leaf area) from San Diego, California, to Alaska. Given that warmer temperatures favor many pathogens such as L. zosterae, we hypothesize that absent or low disease severity in meadows could indicate eelgrass resilience to climate and pathogenic stressors. Regional surveys showed the San Juan Islands as a hotspot for both high disease prevalence and severity, and surveys throughout the Northeast Pacific indicated higher prevalence and severity in intertidal, rather than subtidal, meadows. Further, among sites with eelgrass declines, losses were more pronounced at sites with shallower eelgrass meadows. We suggest that deeper meadows with the lowest disease severity will be refuges from future warming and pathogenic stressors in the Northeast Pacific. Disease monitoring may be a useful conservation approach for marine foundation species, as low or absent disease severity can pinpoint resilient refugia that should be prioritized for future conservation efforts. Even in declining or at-risk habitats, disease surveys can help identify meadows that may contain especially resilient individuals for future restoration efforts. Our approach of using disease as a pulse point for eelgrass resilience to multiple stressors could be applied to other habitats such as coral reefs to inform conservation and management decisions.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taking the Pulse of Resilience in Conserving Seagrass Meadows.\",\"authors\":\"Olivia J Graham, Drew Harvell, Bart Christiaen, Jeff Gaeckle, Lillian R Aoki, Baylen Ratliff, Audrey Vinton, Brendan H Rappazzo, Tina Whitman\",\"doi\":\"10.1093/icb/icae120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Foundational habitats such as seagrasses and coral reefs are at severe risk globally from climate warming. Infectious disease associated with warming events is both a cause of decline and an indicator of stress in both habitats. Since new approaches are needed to detect refugia and design climate-smart networks of marine protected areas, we test the hypothesis that the health of eelgrass (Zostera marina) in temperate ecosystems can serve as a proxy indicative of higher resilience and help pinpoint refugia. Eelgrass meadows worldwide are at risk from environmental stressors, including climate warming and disease. Disease outbreaks of Labyrinthula zosterae are associated with recent, widespread declines in eelgrass meadows throughout the San Juan Islands, Washington, USA. Machine language learning, drone surveys, and molecular diagnostics reveal climate impacts on seagrass wasting disease prevalence (proportion of infected individuals) and severity (proportion of infected leaf area) from San Diego, California, to Alaska. Given that warmer temperatures favor many pathogens such as L. zosterae, we hypothesize that absent or low disease severity in meadows could indicate eelgrass resilience to climate and pathogenic stressors. Regional surveys showed the San Juan Islands as a hotspot for both high disease prevalence and severity, and surveys throughout the Northeast Pacific indicated higher prevalence and severity in intertidal, rather than subtidal, meadows. Further, among sites with eelgrass declines, losses were more pronounced at sites with shallower eelgrass meadows. We suggest that deeper meadows with the lowest disease severity will be refuges from future warming and pathogenic stressors in the Northeast Pacific. Disease monitoring may be a useful conservation approach for marine foundation species, as low or absent disease severity can pinpoint resilient refugia that should be prioritized for future conservation efforts. Even in declining or at-risk habitats, disease surveys can help identify meadows that may contain especially resilient individuals for future restoration efforts. Our approach of using disease as a pulse point for eelgrass resilience to multiple stressors could be applied to other habitats such as coral reefs to inform conservation and management decisions.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae120\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae120","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Taking the Pulse of Resilience in Conserving Seagrass Meadows.
Foundational habitats such as seagrasses and coral reefs are at severe risk globally from climate warming. Infectious disease associated with warming events is both a cause of decline and an indicator of stress in both habitats. Since new approaches are needed to detect refugia and design climate-smart networks of marine protected areas, we test the hypothesis that the health of eelgrass (Zostera marina) in temperate ecosystems can serve as a proxy indicative of higher resilience and help pinpoint refugia. Eelgrass meadows worldwide are at risk from environmental stressors, including climate warming and disease. Disease outbreaks of Labyrinthula zosterae are associated with recent, widespread declines in eelgrass meadows throughout the San Juan Islands, Washington, USA. Machine language learning, drone surveys, and molecular diagnostics reveal climate impacts on seagrass wasting disease prevalence (proportion of infected individuals) and severity (proportion of infected leaf area) from San Diego, California, to Alaska. Given that warmer temperatures favor many pathogens such as L. zosterae, we hypothesize that absent or low disease severity in meadows could indicate eelgrass resilience to climate and pathogenic stressors. Regional surveys showed the San Juan Islands as a hotspot for both high disease prevalence and severity, and surveys throughout the Northeast Pacific indicated higher prevalence and severity in intertidal, rather than subtidal, meadows. Further, among sites with eelgrass declines, losses were more pronounced at sites with shallower eelgrass meadows. We suggest that deeper meadows with the lowest disease severity will be refuges from future warming and pathogenic stressors in the Northeast Pacific. Disease monitoring may be a useful conservation approach for marine foundation species, as low or absent disease severity can pinpoint resilient refugia that should be prioritized for future conservation efforts. Even in declining or at-risk habitats, disease surveys can help identify meadows that may contain especially resilient individuals for future restoration efforts. Our approach of using disease as a pulse point for eelgrass resilience to multiple stressors could be applied to other habitats such as coral reefs to inform conservation and management decisions.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.