{"title":"估算白癜风相关基因的遗传变异:人群基因组学视角。","authors":"Neeraj Bharti, Ruma Banerjee, Archana Achalare, Sunitha Manjari Kasibhatla, Rajendra Joshi","doi":"10.1186/s12863-024-01254-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vitiligo is an auto-immune progressive depigmentation disorder of the skin due to loss of melanocytes. Genetic risk is one of the important factors for development of vitiligo. Preponderance of vitiligo in certain ethnicities is known which can be analysed by understanding the distribution of allele frequencies across normal populations. Earlier GWAS identified 108 risk alleles for vitiligo in Europeans and East Asians. In this study, 64 of these risk alleles were used for analysing their enrichment and depletion across populations (1000 Genomes Project and IndiGen) with reference to 1000 Genomes dataset. Genetic risk scores were calculated and Fisher's exact test was performed to understand statistical significance of their variation in each population with respect to 1000 Genomes dataset as reference. In addition to SNPs reported in GWAS, significant variation in allele frequencies of 1079 vitiligo-related genes were also analysed. Two-tailed Chi-square test and Bonferroni's multiple adjustment values along with fixation index (≥ 0.5) and minimum allele frequency (≥ 0.05) were calculated and used to prioritise the variants based on pairwise comparison across populations.</p><p><strong>Results: </strong>Risk alleles rs1043101 and rs10768122 belong to 3 prime UTR of glutamate receptor gene SLC1A2 are found to be highly enriched in the South Asian population when compared with the 'global normal' population. Intron variant rs4766578 (ATXN2) was found to be deleted in SAS, EAS and AFR and enriched in EUR and AMR1. This risk allele is found to be under positive selection in SAS, AMR1 and EUR. From the ancillary vitiligo gene list, nonsynonymous variant rs16891982 was found to be enriched in the European and the Admixed American populations and depleted in all others. rs2279238 and rs11039155 belonging to the LXR-α gene involved in regulation of metalloproteinase 2 and 9 (melanocyte precursors) were found to be associated with vitiligo in the North Indian population (in earlier study).</p><p><strong>Conclusion: </strong>The differential enrichment/depletion profile of the risk alleles provides insight into the underlying inter-population variations. This would provide clues towards prioritisation of SNPs associated with vitiligo thereby elucidating its preponderance in different ethnic groups.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"72"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282599/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimation of genetic variation in vitiligo associated genes: Population genomics perspective.\",\"authors\":\"Neeraj Bharti, Ruma Banerjee, Archana Achalare, Sunitha Manjari Kasibhatla, Rajendra Joshi\",\"doi\":\"10.1186/s12863-024-01254-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Vitiligo is an auto-immune progressive depigmentation disorder of the skin due to loss of melanocytes. Genetic risk is one of the important factors for development of vitiligo. Preponderance of vitiligo in certain ethnicities is known which can be analysed by understanding the distribution of allele frequencies across normal populations. Earlier GWAS identified 108 risk alleles for vitiligo in Europeans and East Asians. In this study, 64 of these risk alleles were used for analysing their enrichment and depletion across populations (1000 Genomes Project and IndiGen) with reference to 1000 Genomes dataset. Genetic risk scores were calculated and Fisher's exact test was performed to understand statistical significance of their variation in each population with respect to 1000 Genomes dataset as reference. In addition to SNPs reported in GWAS, significant variation in allele frequencies of 1079 vitiligo-related genes were also analysed. Two-tailed Chi-square test and Bonferroni's multiple adjustment values along with fixation index (≥ 0.5) and minimum allele frequency (≥ 0.05) were calculated and used to prioritise the variants based on pairwise comparison across populations.</p><p><strong>Results: </strong>Risk alleles rs1043101 and rs10768122 belong to 3 prime UTR of glutamate receptor gene SLC1A2 are found to be highly enriched in the South Asian population when compared with the 'global normal' population. Intron variant rs4766578 (ATXN2) was found to be deleted in SAS, EAS and AFR and enriched in EUR and AMR1. This risk allele is found to be under positive selection in SAS, AMR1 and EUR. From the ancillary vitiligo gene list, nonsynonymous variant rs16891982 was found to be enriched in the European and the Admixed American populations and depleted in all others. rs2279238 and rs11039155 belonging to the LXR-α gene involved in regulation of metalloproteinase 2 and 9 (melanocyte precursors) were found to be associated with vitiligo in the North Indian population (in earlier study).</p><p><strong>Conclusion: </strong>The differential enrichment/depletion profile of the risk alleles provides insight into the underlying inter-population variations. This would provide clues towards prioritisation of SNPs associated with vitiligo thereby elucidating its preponderance in different ethnic groups.</p>\",\"PeriodicalId\":72427,\"journal\":{\"name\":\"BMC genomic data\",\"volume\":\"25 1\",\"pages\":\"72\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282599/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC genomic data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12863-024-01254-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-024-01254-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Estimation of genetic variation in vitiligo associated genes: Population genomics perspective.
Background: Vitiligo is an auto-immune progressive depigmentation disorder of the skin due to loss of melanocytes. Genetic risk is one of the important factors for development of vitiligo. Preponderance of vitiligo in certain ethnicities is known which can be analysed by understanding the distribution of allele frequencies across normal populations. Earlier GWAS identified 108 risk alleles for vitiligo in Europeans and East Asians. In this study, 64 of these risk alleles were used for analysing their enrichment and depletion across populations (1000 Genomes Project and IndiGen) with reference to 1000 Genomes dataset. Genetic risk scores were calculated and Fisher's exact test was performed to understand statistical significance of their variation in each population with respect to 1000 Genomes dataset as reference. In addition to SNPs reported in GWAS, significant variation in allele frequencies of 1079 vitiligo-related genes were also analysed. Two-tailed Chi-square test and Bonferroni's multiple adjustment values along with fixation index (≥ 0.5) and minimum allele frequency (≥ 0.05) were calculated and used to prioritise the variants based on pairwise comparison across populations.
Results: Risk alleles rs1043101 and rs10768122 belong to 3 prime UTR of glutamate receptor gene SLC1A2 are found to be highly enriched in the South Asian population when compared with the 'global normal' population. Intron variant rs4766578 (ATXN2) was found to be deleted in SAS, EAS and AFR and enriched in EUR and AMR1. This risk allele is found to be under positive selection in SAS, AMR1 and EUR. From the ancillary vitiligo gene list, nonsynonymous variant rs16891982 was found to be enriched in the European and the Admixed American populations and depleted in all others. rs2279238 and rs11039155 belonging to the LXR-α gene involved in regulation of metalloproteinase 2 and 9 (melanocyte precursors) were found to be associated with vitiligo in the North Indian population (in earlier study).
Conclusion: The differential enrichment/depletion profile of the risk alleles provides insight into the underlying inter-population variations. This would provide clues towards prioritisation of SNPs associated with vitiligo thereby elucidating its preponderance in different ethnic groups.