用于基于部件的三维人体表面重建的可嵌入式隐式 IUVD 表示法

Baoxing Li;Yong Deng;Yehui Yang;Xu Zhao
{"title":"用于基于部件的三维人体表面重建的可嵌入式隐式 IUVD 表示法","authors":"Baoxing Li;Yong Deng;Yehui Yang;Xu Zhao","doi":"10.1109/TIP.2024.3430073","DOIUrl":null,"url":null,"abstract":"To reconstruct a 3D human surface from a single image, it is crucial to simultaneously consider human pose, shape, and clothing details. Recent approaches have combined parametric body models (such as SMPL), which capture body pose and shape priors, with neural implicit functions that flexibly learn clothing details. However, this combined representation introduces additional computation, e.g. signed distance calculation in 3D body feature extraction, leading to redundancy in the implicit query-and-infer process and failing to preserve the underlying body shape prior. To address these issues, we propose a novel IUVD-Feedback representation, consisting of an IUVD occupancy function and a feedback query algorithm. This representation replaces the time-consuming signed distance calculation with a simple linear transformation in the IUVD space, leveraging the SMPL UV maps. Additionally, it reduces redundant query points through a feedback mechanism, leading to more reasonable 3D body features and more effective query points, thereby preserving the parametric body prior. Moreover, the IUVD-Feedback representation can be embedded into any existing implicit human reconstruction pipeline without requiring modifications to the trained neural networks. Experiments on the THuman2.0 dataset demonstrate that the proposed IUVD-Feedback representation improves the robustness of results and achieves three times faster acceleration in the query-and-infer process. Furthermore, this representation holds potential for generative applications by leveraging its inherent semantic information from the parametric body model.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Embeddable Implicit IUVD Representation for Part-Based 3D Human Surface Reconstruction\",\"authors\":\"Baoxing Li;Yong Deng;Yehui Yang;Xu Zhao\",\"doi\":\"10.1109/TIP.2024.3430073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reconstruct a 3D human surface from a single image, it is crucial to simultaneously consider human pose, shape, and clothing details. Recent approaches have combined parametric body models (such as SMPL), which capture body pose and shape priors, with neural implicit functions that flexibly learn clothing details. However, this combined representation introduces additional computation, e.g. signed distance calculation in 3D body feature extraction, leading to redundancy in the implicit query-and-infer process and failing to preserve the underlying body shape prior. To address these issues, we propose a novel IUVD-Feedback representation, consisting of an IUVD occupancy function and a feedback query algorithm. This representation replaces the time-consuming signed distance calculation with a simple linear transformation in the IUVD space, leveraging the SMPL UV maps. Additionally, it reduces redundant query points through a feedback mechanism, leading to more reasonable 3D body features and more effective query points, thereby preserving the parametric body prior. Moreover, the IUVD-Feedback representation can be embedded into any existing implicit human reconstruction pipeline without requiring modifications to the trained neural networks. Experiments on the THuman2.0 dataset demonstrate that the proposed IUVD-Feedback representation improves the robustness of results and achieves three times faster acceleration in the query-and-infer process. Furthermore, this representation holds potential for generative applications by leveraging its inherent semantic information from the parametric body model.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10612788/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10612788/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要从单张图像重建三维人体表面,必须同时考虑人体姿势、形状和服装细节。最近的方法结合了参数化人体模型(如 SMPL)和神经隐函数,前者可捕捉人体姿势和形状先验,后者可灵活学习服装细节。然而,这种组合表示法引入了额外的计算,例如三维身体特征提取中的签名距离计算,导致隐式查询和推理过程中出现冗余,无法保留底层的身体形状先验。为了解决这些问题,我们提出了一种新颖的 IUVD 反馈表示法,它由 IUVD 占有函数和反馈查询算法组成。这种表示方法利用 SMPL UV 地图,用 IUVD 空间中的简单线性变换取代了耗时的符号距离计算。此外,它还通过反馈机制减少了冗余查询点,从而获得更合理的三维人体特征和更有效的查询点,从而保留了参数化人体先验。此外,IUVD-反馈表示法可以嵌入到任何现有的隐式人体重建管道中,而无需修改经过训练的神经网络。在 THuman2.0 数据集上的实验表明,所提出的 IUVD-Feedback 表示法提高了结果的鲁棒性,并在查询和推理过程中实现了三倍的加速。此外,通过利用参数化人体模型的固有语义信息,该表示法还具有生成应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Embeddable Implicit IUVD Representation for Part-Based 3D Human Surface Reconstruction
To reconstruct a 3D human surface from a single image, it is crucial to simultaneously consider human pose, shape, and clothing details. Recent approaches have combined parametric body models (such as SMPL), which capture body pose and shape priors, with neural implicit functions that flexibly learn clothing details. However, this combined representation introduces additional computation, e.g. signed distance calculation in 3D body feature extraction, leading to redundancy in the implicit query-and-infer process and failing to preserve the underlying body shape prior. To address these issues, we propose a novel IUVD-Feedback representation, consisting of an IUVD occupancy function and a feedback query algorithm. This representation replaces the time-consuming signed distance calculation with a simple linear transformation in the IUVD space, leveraging the SMPL UV maps. Additionally, it reduces redundant query points through a feedback mechanism, leading to more reasonable 3D body features and more effective query points, thereby preserving the parametric body prior. Moreover, the IUVD-Feedback representation can be embedded into any existing implicit human reconstruction pipeline without requiring modifications to the trained neural networks. Experiments on the THuman2.0 dataset demonstrate that the proposed IUVD-Feedback representation improves the robustness of results and achieves three times faster acceleration in the query-and-infer process. Furthermore, this representation holds potential for generative applications by leveraging its inherent semantic information from the parametric body model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Balanced Destruction-Reconstruction Dynamics for Memory-Replay Class Incremental Learning Blind Video Quality Prediction by Uncovering Human Video Perceptual Representation. Contrastive Open-set Active Learning based Sample Selection for Image Classification. Generating Stylized Features for Single-Source Cross-Dataset Palmprint Recognition With Unseen Target Dataset Learning Prompt-Enhanced Context Features for Weakly-Supervised Video Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1