Ran Yan, Mariama Kebbeh, Yuan Cheng, Yue Wang, Liu Yan, Chen Huan, Xiaolin Zheng, Shuling Shen
{"title":"外源性褪黑激素通过维持叶绿体完整性延缓收获西兰花的黄化过程","authors":"Ran Yan, Mariama Kebbeh, Yuan Cheng, Yue Wang, Liu Yan, Chen Huan, Xiaolin Zheng, Shuling Shen","doi":"10.1016/j.hpj.2023.12.012","DOIUrl":null,"url":null,"abstract":"Yellowing of broccoli is a crucial limiting factor for its commercial value and consumer acceptance during postharvest. In this study, the impacts of exogenous melatonin (MEL) on chlorophyll content and fluorescence, as well as ultrastructure and membrane lipid metabolism of chloroplasts in broccoli were investigated during postharvest. The results showed that MEL treatment (200 μmol L) maintained the chlorophyll content, chloroplast autofluorescence and integral structure, and reduced the level ofserotonin in the chloroplasts in broccoli. Also, MEL treatment inhibited the membrane lipid peroxidation of chloroplasts, as indicated by low levels of superoxide anion (O), hydrogen peroxide (HO) and malondialdehyde (MDA), and high levels of endogenous MEL. In addition, the stability and fluidity of chloroplast membranes were also better maintained in the treated broccoli via increasing the contents of phosphatidylglyceroland (PG), monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG) and unsaturated fatty acids as well as decreasing saturated fatty acid content and the activities of lipoxygenase (LOX) and lipase (LPS). Thus, the application of MEL facilitated the maintenance of chloroplast integrity, thus contributing to yellowing postponement and the extension of the storage life of broccoli.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous melatonin delays yellowing in harvested broccoli by maintaining chloroplast integrity\",\"authors\":\"Ran Yan, Mariama Kebbeh, Yuan Cheng, Yue Wang, Liu Yan, Chen Huan, Xiaolin Zheng, Shuling Shen\",\"doi\":\"10.1016/j.hpj.2023.12.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yellowing of broccoli is a crucial limiting factor for its commercial value and consumer acceptance during postharvest. In this study, the impacts of exogenous melatonin (MEL) on chlorophyll content and fluorescence, as well as ultrastructure and membrane lipid metabolism of chloroplasts in broccoli were investigated during postharvest. The results showed that MEL treatment (200 μmol L) maintained the chlorophyll content, chloroplast autofluorescence and integral structure, and reduced the level ofserotonin in the chloroplasts in broccoli. Also, MEL treatment inhibited the membrane lipid peroxidation of chloroplasts, as indicated by low levels of superoxide anion (O), hydrogen peroxide (HO) and malondialdehyde (MDA), and high levels of endogenous MEL. In addition, the stability and fluidity of chloroplast membranes were also better maintained in the treated broccoli via increasing the contents of phosphatidylglyceroland (PG), monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG) and unsaturated fatty acids as well as decreasing saturated fatty acid content and the activities of lipoxygenase (LOX) and lipase (LPS). Thus, the application of MEL facilitated the maintenance of chloroplast integrity, thus contributing to yellowing postponement and the extension of the storage life of broccoli.\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hpj.2023.12.012\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2023.12.012","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Exogenous melatonin delays yellowing in harvested broccoli by maintaining chloroplast integrity
Yellowing of broccoli is a crucial limiting factor for its commercial value and consumer acceptance during postharvest. In this study, the impacts of exogenous melatonin (MEL) on chlorophyll content and fluorescence, as well as ultrastructure and membrane lipid metabolism of chloroplasts in broccoli were investigated during postharvest. The results showed that MEL treatment (200 μmol L) maintained the chlorophyll content, chloroplast autofluorescence and integral structure, and reduced the level ofserotonin in the chloroplasts in broccoli. Also, MEL treatment inhibited the membrane lipid peroxidation of chloroplasts, as indicated by low levels of superoxide anion (O), hydrogen peroxide (HO) and malondialdehyde (MDA), and high levels of endogenous MEL. In addition, the stability and fluidity of chloroplast membranes were also better maintained in the treated broccoli via increasing the contents of phosphatidylglyceroland (PG), monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG) and unsaturated fatty acids as well as decreasing saturated fatty acid content and the activities of lipoxygenase (LOX) and lipase (LPS). Thus, the application of MEL facilitated the maintenance of chloroplast integrity, thus contributing to yellowing postponement and the extension of the storage life of broccoli.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.