Shengqian Chen , Jianbao Liu , Shuai Ma , Yijiao Fan , Jia Jia , Jianhui Chen , Fahu Chen
{"title":"亚洲北部季风区和中亚干旱地区全新世沙尘暴的变化:气候变化的不同影响","authors":"Shengqian Chen , Jianbao Liu , Shuai Ma , Yijiao Fan , Jia Jia , Jianhui Chen , Fahu Chen","doi":"10.1016/j.gloplacha.2024.104524","DOIUrl":null,"url":null,"abstract":"<div><p>Arid inner Asia, encompassing northern monsoonal Asia (NMA) and arid central Asia (ACA), is the world's second largest dust source region, emitting large quantities of dust particles that travel vast distances around the globe. Previous studies have revealed that the precipitation/moisture variations between NMA and ACA show an out-of-phase or anti-phase relationship on a multi-millennial timescale during the Holocene. However, considering the profound impact of precipitation and related vegetation changes on dust storms, it is unclear whether disparities exist in the variations and mechanisms governing Holocene dust storms between these two regions. Here we use a compilation of Holocene dust storm records from both NMA and ACA, combined with proxy–model comparisons, to demonstrate a consistent temporal pattern of dust storm activity between these regions, with an overall increasing trend on a multi-millennial timescale during the Holocene. Comparison of these dust storm records with regional climate records reveals that surface landscape dominated by the summer monsoon precipitation were the dominant controls on dust storm activity in NMA during the Holocene. In contrast, given the Holocene wetting trend observed for ACA, we propose that precipitation had only a limited influence on modulating the regional dust storms in this region; furthermore, the increasing frequency of dust storms cannot be attributed to decreasing winter monsoon intensity. Instead, we argue that the intensified dust storms in ACA during the late Holocene were triggered by the increased strength and northward (southward) movement of the spring (summer) westerly jet. By revealing the differences in the mechanisms of dust storms across arid inner Asia, our findings provide a scientific basis for implementing policies for dust storm management that can be adapted to meet specific local conditions.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"240 ","pages":"Article 104524"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holocene dust storm variations across northern monsoonal Asia and arid central Asia: Contrasting impacts of climate change\",\"authors\":\"Shengqian Chen , Jianbao Liu , Shuai Ma , Yijiao Fan , Jia Jia , Jianhui Chen , Fahu Chen\",\"doi\":\"10.1016/j.gloplacha.2024.104524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arid inner Asia, encompassing northern monsoonal Asia (NMA) and arid central Asia (ACA), is the world's second largest dust source region, emitting large quantities of dust particles that travel vast distances around the globe. Previous studies have revealed that the precipitation/moisture variations between NMA and ACA show an out-of-phase or anti-phase relationship on a multi-millennial timescale during the Holocene. However, considering the profound impact of precipitation and related vegetation changes on dust storms, it is unclear whether disparities exist in the variations and mechanisms governing Holocene dust storms between these two regions. Here we use a compilation of Holocene dust storm records from both NMA and ACA, combined with proxy–model comparisons, to demonstrate a consistent temporal pattern of dust storm activity between these regions, with an overall increasing trend on a multi-millennial timescale during the Holocene. Comparison of these dust storm records with regional climate records reveals that surface landscape dominated by the summer monsoon precipitation were the dominant controls on dust storm activity in NMA during the Holocene. In contrast, given the Holocene wetting trend observed for ACA, we propose that precipitation had only a limited influence on modulating the regional dust storms in this region; furthermore, the increasing frequency of dust storms cannot be attributed to decreasing winter monsoon intensity. Instead, we argue that the intensified dust storms in ACA during the late Holocene were triggered by the increased strength and northward (southward) movement of the spring (summer) westerly jet. By revealing the differences in the mechanisms of dust storms across arid inner Asia, our findings provide a scientific basis for implementing policies for dust storm management that can be adapted to meet specific local conditions.</p></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"240 \",\"pages\":\"Article 104524\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921818124001711\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124001711","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Holocene dust storm variations across northern monsoonal Asia and arid central Asia: Contrasting impacts of climate change
Arid inner Asia, encompassing northern monsoonal Asia (NMA) and arid central Asia (ACA), is the world's second largest dust source region, emitting large quantities of dust particles that travel vast distances around the globe. Previous studies have revealed that the precipitation/moisture variations between NMA and ACA show an out-of-phase or anti-phase relationship on a multi-millennial timescale during the Holocene. However, considering the profound impact of precipitation and related vegetation changes on dust storms, it is unclear whether disparities exist in the variations and mechanisms governing Holocene dust storms between these two regions. Here we use a compilation of Holocene dust storm records from both NMA and ACA, combined with proxy–model comparisons, to demonstrate a consistent temporal pattern of dust storm activity between these regions, with an overall increasing trend on a multi-millennial timescale during the Holocene. Comparison of these dust storm records with regional climate records reveals that surface landscape dominated by the summer monsoon precipitation were the dominant controls on dust storm activity in NMA during the Holocene. In contrast, given the Holocene wetting trend observed for ACA, we propose that precipitation had only a limited influence on modulating the regional dust storms in this region; furthermore, the increasing frequency of dust storms cannot be attributed to decreasing winter monsoon intensity. Instead, we argue that the intensified dust storms in ACA during the late Holocene were triggered by the increased strength and northward (southward) movement of the spring (summer) westerly jet. By revealing the differences in the mechanisms of dust storms across arid inner Asia, our findings provide a scientific basis for implementing policies for dust storm management that can be adapted to meet specific local conditions.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.