欧洲河流中的草甘膦污染并非来自除草剂的施用?

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2024-07-23 DOI:10.1016/j.watres.2024.122140
{"title":"欧洲河流中的草甘膦污染并非来自除草剂的施用?","authors":"","doi":"10.1016/j.watres.2024.122140","DOIUrl":null,"url":null,"abstract":"<div><p>The most widely used herbicide glyphosate contaminates surface waters around the globe. Both agriculture and urban applications are discussed as sources for glyphosate. To better delineate these sources, we investigated long-term time series of concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) in a large meta-analysis of about 100 sites in the USA and Europe. The U.S. data reveal pulses of glyphosate and AMPA when the discharge of the river is high, likely indicating mobilization by rain after herbicide application. In contrast, European concentration patterns of glyphosate and AMPA show a typical cyclic-seasonal component in their concentration patterns, correlating with patterns of wastewater markers such as pharmaceuticals, which is consistent with the frequent detection of these compounds in wastewater treatment plants. Our large meta-analysis clearly shows that for more than a decade, municipal wastewater was a very important source of glyphosate. In addition, European river water data show rather high and constant base mass fluxes of glyphosate all over the year, not expected from herbicide application. From our meta-analysis, we define criteria for a source of glyphosate, which was hidden so far. AMPA is known to be a transformation product not only of glyphosate but also of aminopolyphosphonates used as antiscalants in many applications. As they are used in laundry detergents in Europe but not in the USA, we hypothesize that glyphosate may also be a transformation product of aminopolyphosphonates.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004313542401039X/pdfft?md5=a934cc4cd27c59b02a5b595cca3c76b2&pid=1-s2.0-S004313542401039X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Glyphosate contamination in European rivers not from herbicide application?\",\"authors\":\"\",\"doi\":\"10.1016/j.watres.2024.122140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The most widely used herbicide glyphosate contaminates surface waters around the globe. Both agriculture and urban applications are discussed as sources for glyphosate. To better delineate these sources, we investigated long-term time series of concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) in a large meta-analysis of about 100 sites in the USA and Europe. The U.S. data reveal pulses of glyphosate and AMPA when the discharge of the river is high, likely indicating mobilization by rain after herbicide application. In contrast, European concentration patterns of glyphosate and AMPA show a typical cyclic-seasonal component in their concentration patterns, correlating with patterns of wastewater markers such as pharmaceuticals, which is consistent with the frequent detection of these compounds in wastewater treatment plants. Our large meta-analysis clearly shows that for more than a decade, municipal wastewater was a very important source of glyphosate. In addition, European river water data show rather high and constant base mass fluxes of glyphosate all over the year, not expected from herbicide application. From our meta-analysis, we define criteria for a source of glyphosate, which was hidden so far. AMPA is known to be a transformation product not only of glyphosate but also of aminopolyphosphonates used as antiscalants in many applications. As they are used in laundry detergents in Europe but not in the USA, we hypothesize that glyphosate may also be a transformation product of aminopolyphosphonates.</p></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S004313542401039X/pdfft?md5=a934cc4cd27c59b02a5b595cca3c76b2&pid=1-s2.0-S004313542401039X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004313542401039X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004313542401039X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

最广泛使用的除草剂草甘膦污染了全球各地的地表水。农业和城市应用都被认为是草甘膦的来源。为了更好地界定这些来源,我们对美国和欧洲约 100 个地点的草甘膦及其主要转化产物氨甲基膦酸(AMPA)浓度的长期时间序列进行了大型荟萃分析。美国的数据显示,当河流的排水量较大时,草甘膦和 AMPA 的浓度会出现脉冲式上升,这可能表明在施用除草剂后,雨水会对草甘膦和 AMPA 产生迁移作用。与此相反,欧洲草甘膦和 AMPA 的浓度模式显示出典型的周期性季节成分,与制药等废水标记物的模式相关,这与废水处理厂经常检测到这些化合物是一致的。我们的大型荟萃分析清楚地表明,十多年来,城市废水是草甘膦的一个非常重要的来源。此外,欧洲的河水数据显示,草甘膦全年的基本质量通量相当高且稳定,这与施用除草剂的情况不符。通过荟萃分析,我们确定了草甘膦来源的标准,而这一标准至今仍被掩盖。众所周知,AMPA 不仅是草甘膦的转化产物,也是在许多应用中用作防粘剂的氨基多膦酸盐的转化产物。由于在欧洲洗衣粉中使用了氨基多膦酸盐,而在美国却没有,因此我们推测草甘膦也可能是氨基多膦酸盐的转化产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Glyphosate contamination in European rivers not from herbicide application?

The most widely used herbicide glyphosate contaminates surface waters around the globe. Both agriculture and urban applications are discussed as sources for glyphosate. To better delineate these sources, we investigated long-term time series of concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) in a large meta-analysis of about 100 sites in the USA and Europe. The U.S. data reveal pulses of glyphosate and AMPA when the discharge of the river is high, likely indicating mobilization by rain after herbicide application. In contrast, European concentration patterns of glyphosate and AMPA show a typical cyclic-seasonal component in their concentration patterns, correlating with patterns of wastewater markers such as pharmaceuticals, which is consistent with the frequent detection of these compounds in wastewater treatment plants. Our large meta-analysis clearly shows that for more than a decade, municipal wastewater was a very important source of glyphosate. In addition, European river water data show rather high and constant base mass fluxes of glyphosate all over the year, not expected from herbicide application. From our meta-analysis, we define criteria for a source of glyphosate, which was hidden so far. AMPA is known to be a transformation product not only of glyphosate but also of aminopolyphosphonates used as antiscalants in many applications. As they are used in laundry detergents in Europe but not in the USA, we hypothesize that glyphosate may also be a transformation product of aminopolyphosphonates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Editorial Board Reliable assessment and prediction of moderate preoxidation of sodium hypochlorite for algae-laden water treatment Three birds with one stone: Sewage sludge deep-drying in 1 hour using secondary aluminum ash to fabricate bricks Influential mechanism of water occurrence states of waste-activated sludge: Specifically focusing on the pore characteristics dominated by cation-organic interactions Acidic proteomes are linked to microbial alkaline preference in African lakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1