贝叶斯铁匠技术:发现高熵难熔合金的热机械性能和变形机制

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-07-28 DOI:10.1038/s41524-024-01353-z
Jacob Startt, Megan J. McCarthy, Mitchell A. Wood, Sean Donegan, Rémi Dingreville
{"title":"贝叶斯铁匠技术:发现高熵难熔合金的热机械性能和变形机制","authors":"Jacob Startt, Megan J. McCarthy, Mitchell A. Wood, Sean Donegan, Rémi Dingreville","doi":"10.1038/s41524-024-01353-z","DOIUrl":null,"url":null,"abstract":"<p>Finding alloys with specific design properties is challenging due to the large number of possible compositions and the complex interactions between elements. This study introduces a multi-objective Bayesian optimization approach guiding molecular dynamics simulations for discovering high-performance refractory alloys with both targeted intrinsic static thermomechanical properties and also deformation mechanisms occurring during dynamic loading. The objective functions are aiming for excellent thermomechanical stability via a high bulk modulus, a low thermal expansion, a high heat capacity, and for a resilient deformation mechanism maximizing the retention of the BCC phase after shock loading. Contrasting two optimization procedures, we show that the Pareto-optimal solutions are confined to a small performance space when the property objectives display a cooperative relationship. Conversely, the Pareto front is much broader in the performance space when these properties have antagonistic relationships. Density functional theory simulations validate these findings and unveil underlying atomic-bond changes driving property improvements.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"34 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian blacksmithing: discovering thermomechanical properties and deformation mechanisms in high-entropy refractory alloys\",\"authors\":\"Jacob Startt, Megan J. McCarthy, Mitchell A. Wood, Sean Donegan, Rémi Dingreville\",\"doi\":\"10.1038/s41524-024-01353-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finding alloys with specific design properties is challenging due to the large number of possible compositions and the complex interactions between elements. This study introduces a multi-objective Bayesian optimization approach guiding molecular dynamics simulations for discovering high-performance refractory alloys with both targeted intrinsic static thermomechanical properties and also deformation mechanisms occurring during dynamic loading. The objective functions are aiming for excellent thermomechanical stability via a high bulk modulus, a low thermal expansion, a high heat capacity, and for a resilient deformation mechanism maximizing the retention of the BCC phase after shock loading. Contrasting two optimization procedures, we show that the Pareto-optimal solutions are confined to a small performance space when the property objectives display a cooperative relationship. Conversely, the Pareto front is much broader in the performance space when these properties have antagonistic relationships. Density functional theory simulations validate these findings and unveil underlying atomic-bond changes driving property improvements.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01353-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01353-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于存在大量可能的成分以及元素之间复杂的相互作用,寻找具有特定设计特性的合金具有挑战性。本研究介绍了一种指导分子动力学模拟的多目标贝叶斯优化方法,用于发现具有目标固有热机械性能和动态加载期间变形机制的高性能耐火合金。目标函数旨在通过高体积模量、低热膨胀和高热容来获得优异的热机械稳定性,并通过弹性变形机制在冲击加载后最大限度地保留 BCC 相。通过对比两种优化程序,我们发现当属性目标显示出合作关系时,帕累托最优解会被限制在一个较小的性能空间内。相反,当这些属性具有拮抗关系时,帕累托前沿的性能空间要宽广得多。密度泛函理论模拟验证了这些发现,并揭示了驱动属性改进的潜在原子键变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian blacksmithing: discovering thermomechanical properties and deformation mechanisms in high-entropy refractory alloys

Finding alloys with specific design properties is challenging due to the large number of possible compositions and the complex interactions between elements. This study introduces a multi-objective Bayesian optimization approach guiding molecular dynamics simulations for discovering high-performance refractory alloys with both targeted intrinsic static thermomechanical properties and also deformation mechanisms occurring during dynamic loading. The objective functions are aiming for excellent thermomechanical stability via a high bulk modulus, a low thermal expansion, a high heat capacity, and for a resilient deformation mechanism maximizing the retention of the BCC phase after shock loading. Contrasting two optimization procedures, we show that the Pareto-optimal solutions are confined to a small performance space when the property objectives display a cooperative relationship. Conversely, the Pareto front is much broader in the performance space when these properties have antagonistic relationships. Density functional theory simulations validate these findings and unveil underlying atomic-bond changes driving property improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Deep learning potential model of displacement damage in hafnium oxide ferroelectric films Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1