阿瑞匹坦(一种用于化疗的止吐药)在有/无助溶剂的亚临界水中溶解度的实验分析和建模

IF 3.4 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Journal of Supercritical Fluids Pub Date : 2024-07-18 DOI:10.1016/j.supflu.2024.106356
Hadi Share Mohammadi, Ali Haghighi Asl, Maryam Khajenoori
{"title":"阿瑞匹坦(一种用于化疗的止吐药)在有/无助溶剂的亚临界水中溶解度的实验分析和建模","authors":"Hadi Share Mohammadi,&nbsp;Ali Haghighi Asl,&nbsp;Maryam Khajenoori","doi":"10.1016/j.supflu.2024.106356","DOIUrl":null,"url":null,"abstract":"<div><p>This action described the experimental equilibrium solubility of aprepitant (APT), an antiemetic drug for chemotherapy, in subcritical water (SW) with/without ethanol as co-solvent, acquired through a static method between 298.15 and 393.15 K and 0–15 % (w/w) of ethanol and the constant pressure of 10 bar. The mole fraction of APT was obtained in the range of 0.39×10<sup>−4</sup> to 9.10×10<sup>−4</sup> while its mole fraction by cosolvent varied from 0.75×10<sup>−4</sup> to 22.98×10<sup>−4</sup>. The obtained results represented the significant effect of solvent temperature on the solubility of APT. For both studied systems, the solubility data was successfully correlated with two well-known semi-empirical temperature-based models, namely the linear and modified Apelblat models. Results from applying statistical criteria exhibited that the modified Apelblat model had the highest accordance with experimental data. Finally, using the obtained correlation results, the apparent thermodynamic analysis including enthalpy, entropy, and Gibbs free energy of dissolution for APT dissolved in SW was obtained.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106356"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis and modeling of aprepitant (an antiemetic drug for chemotherapy) solubility in subcritical water with/without co-solvent\",\"authors\":\"Hadi Share Mohammadi,&nbsp;Ali Haghighi Asl,&nbsp;Maryam Khajenoori\",\"doi\":\"10.1016/j.supflu.2024.106356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This action described the experimental equilibrium solubility of aprepitant (APT), an antiemetic drug for chemotherapy, in subcritical water (SW) with/without ethanol as co-solvent, acquired through a static method between 298.15 and 393.15 K and 0–15 % (w/w) of ethanol and the constant pressure of 10 bar. The mole fraction of APT was obtained in the range of 0.39×10<sup>−4</sup> to 9.10×10<sup>−4</sup> while its mole fraction by cosolvent varied from 0.75×10<sup>−4</sup> to 22.98×10<sup>−4</sup>. The obtained results represented the significant effect of solvent temperature on the solubility of APT. For both studied systems, the solubility data was successfully correlated with two well-known semi-empirical temperature-based models, namely the linear and modified Apelblat models. Results from applying statistical criteria exhibited that the modified Apelblat model had the highest accordance with experimental data. Finally, using the obtained correlation results, the apparent thermodynamic analysis including enthalpy, entropy, and Gibbs free energy of dissolution for APT dissolved in SW was obtained.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"213 \",\"pages\":\"Article 106356\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624001918\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624001918","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

该研究描述了化疗止吐药阿瑞匹坦(APT)在有/无乙醇作为助溶剂的亚临界水(SW)中的实验平衡溶解度,该溶解度是通过静态法在 298.15 至 393.15 K 和 0-15 %(w/w)乙醇以及 10 bar 恒压条件下获得的。APT 的摩尔分数范围为 0.39×10 至 9.10×10,而共溶剂的摩尔分数范围为 0.75×10 至 22.98×10。所得结果表明,溶剂温度对 APT 的溶解度有显著影响。对于所研究的两种体系,溶解度数据都成功地与两种著名的基于温度的半经验模型(即线性模型和修正的阿佩尔布拉特模型)相关联。应用统计标准得出的结果表明,修正的 Apelblat 模型与实验数据的吻合度最高。最后,利用所获得的相关结果,得到了溶解在 SW 中的 APT 的表观热力学分析,包括焓、熵和溶解吉布斯自由能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental analysis and modeling of aprepitant (an antiemetic drug for chemotherapy) solubility in subcritical water with/without co-solvent

This action described the experimental equilibrium solubility of aprepitant (APT), an antiemetic drug for chemotherapy, in subcritical water (SW) with/without ethanol as co-solvent, acquired through a static method between 298.15 and 393.15 K and 0–15 % (w/w) of ethanol and the constant pressure of 10 bar. The mole fraction of APT was obtained in the range of 0.39×10−4 to 9.10×10−4 while its mole fraction by cosolvent varied from 0.75×10−4 to 22.98×10−4. The obtained results represented the significant effect of solvent temperature on the solubility of APT. For both studied systems, the solubility data was successfully correlated with two well-known semi-empirical temperature-based models, namely the linear and modified Apelblat models. Results from applying statistical criteria exhibited that the modified Apelblat model had the highest accordance with experimental data. Finally, using the obtained correlation results, the apparent thermodynamic analysis including enthalpy, entropy, and Gibbs free energy of dissolution for APT dissolved in SW was obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercritical Fluids
Journal of Supercritical Fluids 工程技术-工程:化工
CiteScore
7.60
自引率
10.30%
发文量
236
审稿时长
56 days
期刊介绍: The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics. Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.
期刊最新文献
Flow mechanism and back gap windage loss of a sCO2 radial inflow turbine with impeller scallops Supercritical CO2 assisted bioMOF drug encapsulation and functionalization for delivery with a synergetic therapeutic value Supercritical CO2 green solvent extraction of Nepeta crispa: Evaluation of process optimization, chemical analysis, and biological activity IFC Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1