Jipeng Gu;Xiaodong Yang;Youbing Zhang;Luyao Xie;Licheng Wang;Wenwei Zhou;Xiaohui Ge
{"title":"带分布式储能系统的直流微电网 SOC 平衡和稳定性分析的模糊下垂控制","authors":"Jipeng Gu;Xiaodong Yang;Youbing Zhang;Luyao Xie;Licheng Wang;Wenwei Zhou;Xiaohui Ge","doi":"10.35833/MPCE.2023.000119","DOIUrl":null,"url":null,"abstract":"The unbalanced state of charge (SOC) of distributed energy storage systems (DESSs) in autonomous DC microgrid causes energy storage units (ESUs) to terminate operation due to overcharge or overdischarge, which severely affects the power quality. In this paper, a fuzzy droop control for SOC balance and stability analysis of DC microgrid with DESSs is proposed to achieve SOC balance in ESUs while maintaining a stable DC bus voltage. First, the charge and discharge modes of ESUs are determined based on the power supply requirements of the DC microgrid. One-dimensional fuzzy logic is then applied to establish the relationship between SOC and the droop coefficient \n<tex>$R_{d}$</tex>\n in the aforementioned two modes. In addition, when integrated with voltage-current double closed-loop control, SOC balance in different ESUs is realized. To improve the balance speed and precision, an exponential acceleration factor is added to the input variable of the fuzzy controller. Finally, based on the average model of converter, the system-level stability of microgrid is analyzed. MATLAB/Simulink simulation results verify the effectiveness and rationality of the proposed method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 4","pages":"1203-1216"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379570","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Droop Control for SOC Balance and Stability Analysis of DC Microgrid with Distributed Energy Storage Systems\",\"authors\":\"Jipeng Gu;Xiaodong Yang;Youbing Zhang;Luyao Xie;Licheng Wang;Wenwei Zhou;Xiaohui Ge\",\"doi\":\"10.35833/MPCE.2023.000119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unbalanced state of charge (SOC) of distributed energy storage systems (DESSs) in autonomous DC microgrid causes energy storage units (ESUs) to terminate operation due to overcharge or overdischarge, which severely affects the power quality. In this paper, a fuzzy droop control for SOC balance and stability analysis of DC microgrid with DESSs is proposed to achieve SOC balance in ESUs while maintaining a stable DC bus voltage. First, the charge and discharge modes of ESUs are determined based on the power supply requirements of the DC microgrid. One-dimensional fuzzy logic is then applied to establish the relationship between SOC and the droop coefficient \\n<tex>$R_{d}$</tex>\\n in the aforementioned two modes. In addition, when integrated with voltage-current double closed-loop control, SOC balance in different ESUs is realized. To improve the balance speed and precision, an exponential acceleration factor is added to the input variable of the fuzzy controller. Finally, based on the average model of converter, the system-level stability of microgrid is analyzed. MATLAB/Simulink simulation results verify the effectiveness and rationality of the proposed method.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 4\",\"pages\":\"1203-1216\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379570\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10379570/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10379570/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fuzzy Droop Control for SOC Balance and Stability Analysis of DC Microgrid with Distributed Energy Storage Systems
The unbalanced state of charge (SOC) of distributed energy storage systems (DESSs) in autonomous DC microgrid causes energy storage units (ESUs) to terminate operation due to overcharge or overdischarge, which severely affects the power quality. In this paper, a fuzzy droop control for SOC balance and stability analysis of DC microgrid with DESSs is proposed to achieve SOC balance in ESUs while maintaining a stable DC bus voltage. First, the charge and discharge modes of ESUs are determined based on the power supply requirements of the DC microgrid. One-dimensional fuzzy logic is then applied to establish the relationship between SOC and the droop coefficient
$R_{d}$
in the aforementioned two modes. In addition, when integrated with voltage-current double closed-loop control, SOC balance in different ESUs is realized. To improve the balance speed and precision, an exponential acceleration factor is added to the input variable of the fuzzy controller. Finally, based on the average model of converter, the system-level stability of microgrid is analyzed. MATLAB/Simulink simulation results verify the effectiveness and rationality of the proposed method.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.