{"title":"用于可再生能源高渗透率电力系统频率调节的并联型负载阻尼系数控制器","authors":"Zhe Zhang;Siyang Liao;Yuanzhang Sun;Jian Xu;Deping Ke;Bo Wang;Rui Chen;Yibo Jiang","doi":"10.35833/MPCE.2023.000754","DOIUrl":null,"url":null,"abstract":"Renewable energy sources (RESs) are rapidly developing and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems. The load damping factor \n<tex>$D$</tex>\n characterizes the active power of load that changes with power system frequency, which is an important factor influencing the frequency response. However, the value of \n<tex>$D$</tex>\n is small, resulting in the limitation in frequency regulation of the power system. This paper proposes a parallel-type load damping factor controller to enhance load damping factor by utilizing static var generators (SVGs) in substations. Additionally, it discusses the configuration method for the relevant parameters of the controller, evaluates its frequency regulation capability, investigates the impact of large-scale application of the controller on static and dynamic loads, and conducts a comprehensive evaluation of the impact of the damping factor control process on the voltage stability of the main grid. The large-scale application of the proposed controller can significantly improve the frequency regulation capability, and almost have no influence on the working status of the load. It can also significantly improve the dynamic performance of system frequency. The proposed controller can provide technical support for the frequency regulation of new power systems with high proportion of RESs.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 4","pages":"1019-1030"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379576","citationCount":"0","resultStr":"{\"title\":\"A Parallel-Type Load Damping Factor Controller for Frequency Regulation in Power Systems with High Penetration of Renewable Energy Sources\",\"authors\":\"Zhe Zhang;Siyang Liao;Yuanzhang Sun;Jian Xu;Deping Ke;Bo Wang;Rui Chen;Yibo Jiang\",\"doi\":\"10.35833/MPCE.2023.000754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy sources (RESs) are rapidly developing and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems. The load damping factor \\n<tex>$D$</tex>\\n characterizes the active power of load that changes with power system frequency, which is an important factor influencing the frequency response. However, the value of \\n<tex>$D$</tex>\\n is small, resulting in the limitation in frequency regulation of the power system. This paper proposes a parallel-type load damping factor controller to enhance load damping factor by utilizing static var generators (SVGs) in substations. Additionally, it discusses the configuration method for the relevant parameters of the controller, evaluates its frequency regulation capability, investigates the impact of large-scale application of the controller on static and dynamic loads, and conducts a comprehensive evaluation of the impact of the damping factor control process on the voltage stability of the main grid. The large-scale application of the proposed controller can significantly improve the frequency regulation capability, and almost have no influence on the working status of the load. It can also significantly improve the dynamic performance of system frequency. The proposed controller can provide technical support for the frequency regulation of new power systems with high proportion of RESs.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 4\",\"pages\":\"1019-1030\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10379576/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10379576/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Parallel-Type Load Damping Factor Controller for Frequency Regulation in Power Systems with High Penetration of Renewable Energy Sources
Renewable energy sources (RESs) are rapidly developing and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems. The load damping factor
$D$
characterizes the active power of load that changes with power system frequency, which is an important factor influencing the frequency response. However, the value of
$D$
is small, resulting in the limitation in frequency regulation of the power system. This paper proposes a parallel-type load damping factor controller to enhance load damping factor by utilizing static var generators (SVGs) in substations. Additionally, it discusses the configuration method for the relevant parameters of the controller, evaluates its frequency regulation capability, investigates the impact of large-scale application of the controller on static and dynamic loads, and conducts a comprehensive evaluation of the impact of the damping factor control process on the voltage stability of the main grid. The large-scale application of the proposed controller can significantly improve the frequency regulation capability, and almost have no influence on the working status of the load. It can also significantly improve the dynamic performance of system frequency. The proposed controller can provide technical support for the frequency regulation of new power systems with high proportion of RESs.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.