在强震数据有限的地区进行基于能谱的概率地震灾害分析的新方法

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Spectra Pub Date : 2024-07-24 DOI:10.1177/87552930241263621
Haizhong Zhang, Rui Zhang, Yan-Gang Zhao
{"title":"在强震数据有限的地区进行基于能谱的概率地震灾害分析的新方法","authors":"Haizhong Zhang, Rui Zhang, Yan-Gang Zhao","doi":"10.1177/87552930241263621","DOIUrl":null,"url":null,"abstract":"With the rapid development of energy-based seismic design, probabilistic seismic hazard analysis (PSHA) in terms of the input energy spectrum, E<jats:sub> I</jats:sub>, has become increasingly important. Generally, implementing E<jats:sub> I</jats:sub>-based PSHA requires a ground-motion prediction equation (GMPE) for E<jats:sub> I</jats:sub>. However, although a GMPE for E<jats:sub> I</jats:sub> can be constructed in regions with abundant earthquake data based on regression analyses, it is difficult to obtain in regions lacking strong ground-motion records. Therefore, this study proposes a new approach for performing E<jats:sub> I</jats:sub>-based PSHA in regions with limited earthquake data. Instead of using a GMPE for E<jats:sub> I</jats:sub> directly, a model of Fourier amplitude spectrum (FAS) is adopted, which can be determined using a small number of earthquake data with small-to-moderate magnitudes. Then, the E<jats:sub> I</jats:sub> of the ground motion is obtained from FAS based on the relationship between E<jats:sub> I</jats:sub> and FAS. Furthermore, to calculate the annual intensity exceedance rate within the proposed framework of adopting the FAS model, a highly efficient method, namely, the moment method, is applied. Several numerical examples indicate that the proposed approach not only is suitable for regions lacking strong ground-motion records but also performs very efficiently in calculating the annual intensity exceedance rate.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel approach for energy-spectrum-based probabilistic seismic hazard analysis in regions with limited strong earthquake data\",\"authors\":\"Haizhong Zhang, Rui Zhang, Yan-Gang Zhao\",\"doi\":\"10.1177/87552930241263621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of energy-based seismic design, probabilistic seismic hazard analysis (PSHA) in terms of the input energy spectrum, E<jats:sub> I</jats:sub>, has become increasingly important. Generally, implementing E<jats:sub> I</jats:sub>-based PSHA requires a ground-motion prediction equation (GMPE) for E<jats:sub> I</jats:sub>. However, although a GMPE for E<jats:sub> I</jats:sub> can be constructed in regions with abundant earthquake data based on regression analyses, it is difficult to obtain in regions lacking strong ground-motion records. Therefore, this study proposes a new approach for performing E<jats:sub> I</jats:sub>-based PSHA in regions with limited earthquake data. Instead of using a GMPE for E<jats:sub> I</jats:sub> directly, a model of Fourier amplitude spectrum (FAS) is adopted, which can be determined using a small number of earthquake data with small-to-moderate magnitudes. Then, the E<jats:sub> I</jats:sub> of the ground motion is obtained from FAS based on the relationship between E<jats:sub> I</jats:sub> and FAS. Furthermore, to calculate the annual intensity exceedance rate within the proposed framework of adopting the FAS model, a highly efficient method, namely, the moment method, is applied. Several numerical examples indicate that the proposed approach not only is suitable for regions lacking strong ground-motion records but also performs very efficiently in calculating the annual intensity exceedance rate.\",\"PeriodicalId\":11392,\"journal\":{\"name\":\"Earthquake Spectra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Spectra\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/87552930241263621\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/87552930241263621","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

随着基于能量的抗震设计的快速发展,输入能量谱 E I 的概率地震危险性分析(PSHA)变得越来越重要。然而,虽然在地震数据丰富的地区可以根据回归分析构建 E I 的 GMPE,但在缺乏强烈地动记录的地区却很难获得。因此,本研究提出了一种新方法,用于在地震数据有限的地区执行基于 E I 的 PSHA。不直接使用 GMPE 来计算 E I,而是采用傅立叶振幅谱(FAS)模型。然后,根据 E I 与 FAS 之间的关系,从 FAS 得出地面运动的 E I。此外,为了在采用 FAS 模型的拟议框架内计算年烈度超限率,还采用了一种高效方法,即矩量法。几个数值实例表明,建议的方法不仅适用于缺乏强烈地动记录的地区,而且在计算年烈度超限率方面也非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel approach for energy-spectrum-based probabilistic seismic hazard analysis in regions with limited strong earthquake data
With the rapid development of energy-based seismic design, probabilistic seismic hazard analysis (PSHA) in terms of the input energy spectrum, E I, has become increasingly important. Generally, implementing E I-based PSHA requires a ground-motion prediction equation (GMPE) for E I. However, although a GMPE for E I can be constructed in regions with abundant earthquake data based on regression analyses, it is difficult to obtain in regions lacking strong ground-motion records. Therefore, this study proposes a new approach for performing E I-based PSHA in regions with limited earthquake data. Instead of using a GMPE for E I directly, a model of Fourier amplitude spectrum (FAS) is adopted, which can be determined using a small number of earthquake data with small-to-moderate magnitudes. Then, the E I of the ground motion is obtained from FAS based on the relationship between E I and FAS. Furthermore, to calculate the annual intensity exceedance rate within the proposed framework of adopting the FAS model, a highly efficient method, namely, the moment method, is applied. Several numerical examples indicate that the proposed approach not only is suitable for regions lacking strong ground-motion records but also performs very efficiently in calculating the annual intensity exceedance rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
期刊最新文献
Deep-neural-network model for predicting ground motion parameters using earthquake horizontal-to-vertical spectral ratios Ground-motions site and event specificity: Insights from assessing a suite of simulated ground motions in the San Francisco Bay Area Analysis of site-response residuals from empirical ground-motion models to account for observed sedimentary basin effects in Wellington, New Zealand Modeling hospital resources based on global epidemiology after earthquake-related disasters Front Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1