{"title":"分布式网络中 5G 基站群的时空优化","authors":"Silu Zhang;Nian Liu;Jianpei Han","doi":"10.35833/MPCE.2023.000024","DOIUrl":null,"url":null,"abstract":"With the large-scale connection of 5G base stations (BSs) to the distribution networks (DNs), 5G BSs are utilized as flexible loads to participate in the peak load regulation, where the BSs can be divided into base station groups (BSGs) to realize inter-district energy transfer. A Stackelberg game-based optimization framework is proposed, where the distribution network operator (DNO) works as a leader with dynamic pricing for multi-BSGs; while BSGs serve as followers with the ability of demand response to adjust their charging and discharging strategies in temporal dimension and load migration strategy in spatial dimension. Subsequently, the presence and uniqueness of the Stackelberg equilibrium (SE) are provided. Moreover, differential evolution is adopted to reach the SE and the optimization problem in multi-BSGs is decomposed to solve the time-space coupling. Finally, through simulation of a practical system, the results show that the DNO operation profit is increased via cutting down the peak load and the operation costs for multi-BSGs are reduced, which reaches a win-win effect.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 4","pages":"1159-1169"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10335160","citationCount":"0","resultStr":"{\"title\":\"Temporal and Spatial Optimization for 5G Base Station Groups in Distribution Networks\",\"authors\":\"Silu Zhang;Nian Liu;Jianpei Han\",\"doi\":\"10.35833/MPCE.2023.000024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the large-scale connection of 5G base stations (BSs) to the distribution networks (DNs), 5G BSs are utilized as flexible loads to participate in the peak load regulation, where the BSs can be divided into base station groups (BSGs) to realize inter-district energy transfer. A Stackelberg game-based optimization framework is proposed, where the distribution network operator (DNO) works as a leader with dynamic pricing for multi-BSGs; while BSGs serve as followers with the ability of demand response to adjust their charging and discharging strategies in temporal dimension and load migration strategy in spatial dimension. Subsequently, the presence and uniqueness of the Stackelberg equilibrium (SE) are provided. Moreover, differential evolution is adopted to reach the SE and the optimization problem in multi-BSGs is decomposed to solve the time-space coupling. Finally, through simulation of a practical system, the results show that the DNO operation profit is increased via cutting down the peak load and the operation costs for multi-BSGs are reduced, which reaches a win-win effect.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 4\",\"pages\":\"1159-1169\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10335160\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10335160/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10335160/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Temporal and Spatial Optimization for 5G Base Station Groups in Distribution Networks
With the large-scale connection of 5G base stations (BSs) to the distribution networks (DNs), 5G BSs are utilized as flexible loads to participate in the peak load regulation, where the BSs can be divided into base station groups (BSGs) to realize inter-district energy transfer. A Stackelberg game-based optimization framework is proposed, where the distribution network operator (DNO) works as a leader with dynamic pricing for multi-BSGs; while BSGs serve as followers with the ability of demand response to adjust their charging and discharging strategies in temporal dimension and load migration strategy in spatial dimension. Subsequently, the presence and uniqueness of the Stackelberg equilibrium (SE) are provided. Moreover, differential evolution is adopted to reach the SE and the optimization problem in multi-BSGs is decomposed to solve the time-space coupling. Finally, through simulation of a practical system, the results show that the DNO operation profit is increased via cutting down the peak load and the operation costs for multi-BSGs are reduced, which reaches a win-win effect.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.