用于实现 N2 到 NH3 高效转化的 Ru3@Mo2CO2 MXene 单簇催化剂

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-07-25 DOI:10.1093/nsr/nwae251
Cong Zhang, Ze-Hui Wang, Haiyan Wang, Jin-Xia Liang, Chun Zhu, Jun Li
{"title":"用于实现 N2 到 NH3 高效转化的 Ru3@Mo2CO2 MXene 单簇催化剂","authors":"Cong Zhang, Ze-Hui Wang, Haiyan Wang, Jin-Xia Liang, Chun Zhu, Jun Li","doi":"10.1093/nsr/nwae251","DOIUrl":null,"url":null,"abstract":"Single-cluster catalysts (SCCs) representing structurally well-defined metal clusters anchored on support tend to exhibit tuneable catalytic performance for complex redox reactions in heterogeneous catalysis. Here we report a theoretical study on an SCC of Ru3@Mo2CO2 MXene for N2-to-NH3 thermal conversion. Our results show that Ru3@Mo2CO2 can effectively activate N2 and promotes its conversion to NH3 through an association mechanism, in which the rate-determining step of NH2* + H* → NH3* has a low energy barrier of 1.29 eV. Especially, with the assistance of Mo2CO2 support, the positively charged Ru3 cluster active site can effectively adsorb and activate N2, leading to 0.74 |e| charge transfer from Ru3@Mo2CO2 to the adsorbed N2. The supported Ru3 also acts as an electron reservoir to regulate the charge transfer for various intermediate steps of ammonia synthesis. Microkinetic analysis shows that the turnover frequency (TOF) of the N2-to-NH3 conversion on Ru3@Mo2CO2 is as high as 1.45 × 10−2 s−1 site−1 at a selected thermodynamic condition of 48 bar and 700 K, the performance of which even surpasses those of the Ru B5 site and Fe3/θ-Al2O3(010) reported before. Our work provides a theoretical understanding on the high stability and catalytic mechanism of Ru3@Mo2CO2 and guidance for further designing and fabricating MXene-based metal SCCs for ammonia synthesis under mild conditions.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"8 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ru3@Mo2CO2 MXene single-cluster catalyst for highly efficient N2-to-NH3 conversion\",\"authors\":\"Cong Zhang, Ze-Hui Wang, Haiyan Wang, Jin-Xia Liang, Chun Zhu, Jun Li\",\"doi\":\"10.1093/nsr/nwae251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cluster catalysts (SCCs) representing structurally well-defined metal clusters anchored on support tend to exhibit tuneable catalytic performance for complex redox reactions in heterogeneous catalysis. Here we report a theoretical study on an SCC of Ru3@Mo2CO2 MXene for N2-to-NH3 thermal conversion. Our results show that Ru3@Mo2CO2 can effectively activate N2 and promotes its conversion to NH3 through an association mechanism, in which the rate-determining step of NH2* + H* → NH3* has a low energy barrier of 1.29 eV. Especially, with the assistance of Mo2CO2 support, the positively charged Ru3 cluster active site can effectively adsorb and activate N2, leading to 0.74 |e| charge transfer from Ru3@Mo2CO2 to the adsorbed N2. The supported Ru3 also acts as an electron reservoir to regulate the charge transfer for various intermediate steps of ammonia synthesis. Microkinetic analysis shows that the turnover frequency (TOF) of the N2-to-NH3 conversion on Ru3@Mo2CO2 is as high as 1.45 × 10−2 s−1 site−1 at a selected thermodynamic condition of 48 bar and 700 K, the performance of which even surpasses those of the Ru B5 site and Fe3/θ-Al2O3(010) reported before. Our work provides a theoretical understanding on the high stability and catalytic mechanism of Ru3@Mo2CO2 and guidance for further designing and fabricating MXene-based metal SCCs for ammonia synthesis under mild conditions.\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae251\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae251","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单簇催化剂(SCC)代表了锚定在载体上的结构明确的金属簇,在异相催化的复杂氧化还原反应中往往表现出可调的催化性能。在此,我们报告了一项关于 Ru3@Mo2CO2 MXene SCC 用于 N2 到 NH3 热转化的理论研究。我们的研究结果表明,Ru3@Mo2CO2 能有效活化 N2,并通过缔合机制促进其转化为 NH3,其中 NH2* + H* → NH3* 的速率决定步骤具有 1.29 eV 的低能垒。特别是在 Mo2CO2 支持的帮助下,带正电荷的 Ru3 簇活性位点可以有效地吸附和活化 N2,导致 0.74 |e| 电荷从 Ru3@Mo2CO2 转移到吸附的 N2 上。支撑的 Ru3 还可作为电子库,调节氨合成各中间步骤的电荷转移。微动力学分析表明,在选定的 48 bar 和 700 K 热力学条件下,Ru3@Mo2CO2 上 N2 到 NH3 转化的周转频率(TOF)高达 1.45 × 10-2 s-1 位点-1,其性能甚至超过了之前报道的 Ru B5 位点和 Fe3/θ-Al2O3(010)。我们的工作从理论上理解了 Ru3@Mo2CO2 的高稳定性和催化机理,并为进一步设计和制造用于温和条件下合成氨的 MXene 基金属 SCC 提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ru3@Mo2CO2 MXene single-cluster catalyst for highly efficient N2-to-NH3 conversion
Single-cluster catalysts (SCCs) representing structurally well-defined metal clusters anchored on support tend to exhibit tuneable catalytic performance for complex redox reactions in heterogeneous catalysis. Here we report a theoretical study on an SCC of Ru3@Mo2CO2 MXene for N2-to-NH3 thermal conversion. Our results show that Ru3@Mo2CO2 can effectively activate N2 and promotes its conversion to NH3 through an association mechanism, in which the rate-determining step of NH2* + H* → NH3* has a low energy barrier of 1.29 eV. Especially, with the assistance of Mo2CO2 support, the positively charged Ru3 cluster active site can effectively adsorb and activate N2, leading to 0.74 |e| charge transfer from Ru3@Mo2CO2 to the adsorbed N2. The supported Ru3 also acts as an electron reservoir to regulate the charge transfer for various intermediate steps of ammonia synthesis. Microkinetic analysis shows that the turnover frequency (TOF) of the N2-to-NH3 conversion on Ru3@Mo2CO2 is as high as 1.45 × 10−2 s−1 site−1 at a selected thermodynamic condition of 48 bar and 700 K, the performance of which even surpasses those of the Ru B5 site and Fe3/θ-Al2O3(010) reported before. Our work provides a theoretical understanding on the high stability and catalytic mechanism of Ru3@Mo2CO2 and guidance for further designing and fabricating MXene-based metal SCCs for ammonia synthesis under mild conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
Origin of sulfate in post-snowball-Earth oceans: river inputs vs. shelf-derived H2S. Contribution of irrigation to the production of maize, wheat, and rice in the major global producing countries. Fossil evidence for silica biomineralization in Permian lycophytes. Shaping the future of fiber technology: exploring functional and smart innovations. The search for life signatures on Mars by the Tianwen-3 Mars sample return mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1