{"title":"临时中继:更灵活的跨链方式","authors":"Haonan Wang, Jingyu Wang, Lixin Liu, Yu Lu","doi":"10.1007/s12083-024-01762-3","DOIUrl":null,"url":null,"abstract":"<p>As blockchain technology advances, cross-chain asset transfer has become a critical issue in achieving interoperability between different blockchain networks. However, existing cross-chain solutions often require high trust requirements and complex communication protocols, which hinder usability and flexibility. To address these issues, this work introduces the temporary relay, a novel cross-chain asset transfer model without continuous blockchain network presence and frequent inter-chain communication. Technically, the temporary relay uses non-interactive zero-knowledge proofs to verify transactions and protect privacy while ensuring blockchain immutability and traceability after the temporary relay is shut down. We detail the construction of the temporary relay and analyze the security of the circuits constructed by the zero-knowledge proofs. Prototype implementation on the Substrate blockchain platform and experimental evaluation demonstrate the feasibility of the temporary relay. Furthermore, the verification time of zero-knowledge proofs in our model is short.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"93 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporary relay: A more flexible way to cross chains\",\"authors\":\"Haonan Wang, Jingyu Wang, Lixin Liu, Yu Lu\",\"doi\":\"10.1007/s12083-024-01762-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As blockchain technology advances, cross-chain asset transfer has become a critical issue in achieving interoperability between different blockchain networks. However, existing cross-chain solutions often require high trust requirements and complex communication protocols, which hinder usability and flexibility. To address these issues, this work introduces the temporary relay, a novel cross-chain asset transfer model without continuous blockchain network presence and frequent inter-chain communication. Technically, the temporary relay uses non-interactive zero-knowledge proofs to verify transactions and protect privacy while ensuring blockchain immutability and traceability after the temporary relay is shut down. We detail the construction of the temporary relay and analyze the security of the circuits constructed by the zero-knowledge proofs. Prototype implementation on the Substrate blockchain platform and experimental evaluation demonstrate the feasibility of the temporary relay. Furthermore, the verification time of zero-knowledge proofs in our model is short.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01762-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01762-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Temporary relay: A more flexible way to cross chains
As blockchain technology advances, cross-chain asset transfer has become a critical issue in achieving interoperability between different blockchain networks. However, existing cross-chain solutions often require high trust requirements and complex communication protocols, which hinder usability and flexibility. To address these issues, this work introduces the temporary relay, a novel cross-chain asset transfer model without continuous blockchain network presence and frequent inter-chain communication. Technically, the temporary relay uses non-interactive zero-knowledge proofs to verify transactions and protect privacy while ensuring blockchain immutability and traceability after the temporary relay is shut down. We detail the construction of the temporary relay and analyze the security of the circuits constructed by the zero-knowledge proofs. Prototype implementation on the Substrate blockchain platform and experimental evaluation demonstrate the feasibility of the temporary relay. Furthermore, the verification time of zero-knowledge proofs in our model is short.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.