Neeraj Kaushal, Husain Attarwala, Mir Javid Iqbal, Rajnish Saini, Linh Van, Min Liang
{"title":"用于治疗心力衰竭的在研疗法 mRNA-0184 的转化药代动力学/药效学模型","authors":"Neeraj Kaushal, Husain Attarwala, Mir Javid Iqbal, Rajnish Saini, Linh Van, Min Liang","doi":"10.1111/cts.13894","DOIUrl":null,"url":null,"abstract":"<p>Heart failure (HF) is a complex, progressive disorder that is associated with substantial morbidity and mortality on a global scale. Relaxin-2 is a naturally occurring hormone that may have potential therapeutic benefit for patients with HF. To investigate the therapeutic potential of relaxin in the treatment of patients with HF, mRNA-0184, a novel, investigational, lipid nanoparticle (LNP)–encapsulated mRNA therapy that encodes for human relaxin-2 fused to variable light chain kappa (Rel2-vlk) was developed. A translational semi-mechanistic population pharmacokinetic (PK)/pharmacodynamic (PD) model was developed using data from non-human primates at dose levels ranging from 0.15 to 1 mg/kg. The PK/PD model was able to describe the PK of Rel2-vlk mRNA and translated Rel2-vlk protein in non-human primates adequately with relatively precise estimates. The preclinical PK/PD model was then scaled allometrically to determine the human mRNA-0184 dose that would achieve therapeutic levels of Rel2-vlk protein expression in patients with stable HF with reduced ejection fraction. Model-based simulations derived from the scaled PK/PD model support the selection of 0.025 mg/kg as an appropriate starting human dose of mRNA-0184 to achieve average trough relaxin levels between 1 and 2.5 ng/mL, which is the potential exposure for cardioprotective action of relaxin.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"17 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.13894","citationCount":"0","resultStr":"{\"title\":\"Translational pharmacokinetic/pharmacodynamic model for mRNA-0184, an investigational therapeutic for the treatment of heart failure\",\"authors\":\"Neeraj Kaushal, Husain Attarwala, Mir Javid Iqbal, Rajnish Saini, Linh Van, Min Liang\",\"doi\":\"10.1111/cts.13894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heart failure (HF) is a complex, progressive disorder that is associated with substantial morbidity and mortality on a global scale. Relaxin-2 is a naturally occurring hormone that may have potential therapeutic benefit for patients with HF. To investigate the therapeutic potential of relaxin in the treatment of patients with HF, mRNA-0184, a novel, investigational, lipid nanoparticle (LNP)–encapsulated mRNA therapy that encodes for human relaxin-2 fused to variable light chain kappa (Rel2-vlk) was developed. A translational semi-mechanistic population pharmacokinetic (PK)/pharmacodynamic (PD) model was developed using data from non-human primates at dose levels ranging from 0.15 to 1 mg/kg. The PK/PD model was able to describe the PK of Rel2-vlk mRNA and translated Rel2-vlk protein in non-human primates adequately with relatively precise estimates. The preclinical PK/PD model was then scaled allometrically to determine the human mRNA-0184 dose that would achieve therapeutic levels of Rel2-vlk protein expression in patients with stable HF with reduced ejection fraction. Model-based simulations derived from the scaled PK/PD model support the selection of 0.025 mg/kg as an appropriate starting human dose of mRNA-0184 to achieve average trough relaxin levels between 1 and 2.5 ng/mL, which is the potential exposure for cardioprotective action of relaxin.</p>\",\"PeriodicalId\":50610,\"journal\":{\"name\":\"Cts-Clinical and Translational Science\",\"volume\":\"17 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.13894\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cts-Clinical and Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cts.13894\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.13894","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Translational pharmacokinetic/pharmacodynamic model for mRNA-0184, an investigational therapeutic for the treatment of heart failure
Heart failure (HF) is a complex, progressive disorder that is associated with substantial morbidity and mortality on a global scale. Relaxin-2 is a naturally occurring hormone that may have potential therapeutic benefit for patients with HF. To investigate the therapeutic potential of relaxin in the treatment of patients with HF, mRNA-0184, a novel, investigational, lipid nanoparticle (LNP)–encapsulated mRNA therapy that encodes for human relaxin-2 fused to variable light chain kappa (Rel2-vlk) was developed. A translational semi-mechanistic population pharmacokinetic (PK)/pharmacodynamic (PD) model was developed using data from non-human primates at dose levels ranging from 0.15 to 1 mg/kg. The PK/PD model was able to describe the PK of Rel2-vlk mRNA and translated Rel2-vlk protein in non-human primates adequately with relatively precise estimates. The preclinical PK/PD model was then scaled allometrically to determine the human mRNA-0184 dose that would achieve therapeutic levels of Rel2-vlk protein expression in patients with stable HF with reduced ejection fraction. Model-based simulations derived from the scaled PK/PD model support the selection of 0.025 mg/kg as an appropriate starting human dose of mRNA-0184 to achieve average trough relaxin levels between 1 and 2.5 ng/mL, which is the potential exposure for cardioprotective action of relaxin.
期刊介绍:
Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.