Daina Dayana Arenas Buelvas , Luan Pereira Camargo , Daniel Farinha Valezi , Lilian Felipe Silva Tupan , Luiz Henrique Dall’Antonia , Christian Manuel Moreno Rocha , Daniel Andres Sanchez Lopez , Alexandre Urbano , Bruno Luiz Santana Vicentin
{"title":"不同磁铁矿纳米粒子浓度对聚苯胺基磁性纳米复合材料的结构、电学和磁学特性的影响","authors":"Daina Dayana Arenas Buelvas , Luan Pereira Camargo , Daniel Farinha Valezi , Lilian Felipe Silva Tupan , Luiz Henrique Dall’Antonia , Christian Manuel Moreno Rocha , Daniel Andres Sanchez Lopez , Alexandre Urbano , Bruno Luiz Santana Vicentin","doi":"10.1016/j.synthmet.2024.117703","DOIUrl":null,"url":null,"abstract":"<div><p>We report the synthesis of polyaniline/magnetite nanocomposites (PMNCs) via <em>in situ</em> chemical oxidation polymerization of aniline with magnetite nanoparticles (MNPs) at 5, 12, and 25 wt%. The objective was to evaluate how the MNPs’ proportion affects the electrical, magnetic, and structural properties, which were investigated using XRD, EDXRF, TEM, EIS, ESR spectroscopy, Mössbauer spectroscopy, and VSM. EDXRF confirmed the formation of MNPs, while XRD revealed the crystalline nature of MNPs and the semicrystalline structure of PANI, with a decrease crystallinity index as the MNPs percentage increased. TEM showed PANI encapsulating MNPs with average diameters of 9.7 ± 2, 9.9 ± 2, and 13.1 ± 3 nm for PMNC25, PMNC12, and PMNC5, respectively. Conductivity values of PANI, PMNC25, PMNC12 and PMNC5 were 7.96 ×10⁻⁴, 1.38 ×10⁻⁴, 2.19 ×10⁻⁴ and 2.31 ×10⁻⁴ S/cm, respectively. ESR indicated cationic radicals responsible for conductivity. Saturation magnetization (Ms) for MNPs, PMNC25, PMNC12 and PMNC5 were 93.4, 24.6, 11.8 and 5.6 emu/g, respectively, with superparamagnetic behavior observed. Our findings show that incorporating MNPs into the PANI matrix modulates electrical conductivity and magnetic properties while maintaining the nanocomposite’s structure, highlighting the multifunctional potential of these composites.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"307 ","pages":"Article 117703"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of varying magnetite nanoparticle concentrations on the structural, electrical, and magnetic properties of polyaniline-based magnetic nanocomposites\",\"authors\":\"Daina Dayana Arenas Buelvas , Luan Pereira Camargo , Daniel Farinha Valezi , Lilian Felipe Silva Tupan , Luiz Henrique Dall’Antonia , Christian Manuel Moreno Rocha , Daniel Andres Sanchez Lopez , Alexandre Urbano , Bruno Luiz Santana Vicentin\",\"doi\":\"10.1016/j.synthmet.2024.117703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report the synthesis of polyaniline/magnetite nanocomposites (PMNCs) via <em>in situ</em> chemical oxidation polymerization of aniline with magnetite nanoparticles (MNPs) at 5, 12, and 25 wt%. The objective was to evaluate how the MNPs’ proportion affects the electrical, magnetic, and structural properties, which were investigated using XRD, EDXRF, TEM, EIS, ESR spectroscopy, Mössbauer spectroscopy, and VSM. EDXRF confirmed the formation of MNPs, while XRD revealed the crystalline nature of MNPs and the semicrystalline structure of PANI, with a decrease crystallinity index as the MNPs percentage increased. TEM showed PANI encapsulating MNPs with average diameters of 9.7 ± 2, 9.9 ± 2, and 13.1 ± 3 nm for PMNC25, PMNC12, and PMNC5, respectively. Conductivity values of PANI, PMNC25, PMNC12 and PMNC5 were 7.96 ×10⁻⁴, 1.38 ×10⁻⁴, 2.19 ×10⁻⁴ and 2.31 ×10⁻⁴ S/cm, respectively. ESR indicated cationic radicals responsible for conductivity. Saturation magnetization (Ms) for MNPs, PMNC25, PMNC12 and PMNC5 were 93.4, 24.6, 11.8 and 5.6 emu/g, respectively, with superparamagnetic behavior observed. Our findings show that incorporating MNPs into the PANI matrix modulates electrical conductivity and magnetic properties while maintaining the nanocomposite’s structure, highlighting the multifunctional potential of these composites.</p></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"307 \",\"pages\":\"Article 117703\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677924001656\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924001656","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of varying magnetite nanoparticle concentrations on the structural, electrical, and magnetic properties of polyaniline-based magnetic nanocomposites
We report the synthesis of polyaniline/magnetite nanocomposites (PMNCs) via in situ chemical oxidation polymerization of aniline with magnetite nanoparticles (MNPs) at 5, 12, and 25 wt%. The objective was to evaluate how the MNPs’ proportion affects the electrical, magnetic, and structural properties, which were investigated using XRD, EDXRF, TEM, EIS, ESR spectroscopy, Mössbauer spectroscopy, and VSM. EDXRF confirmed the formation of MNPs, while XRD revealed the crystalline nature of MNPs and the semicrystalline structure of PANI, with a decrease crystallinity index as the MNPs percentage increased. TEM showed PANI encapsulating MNPs with average diameters of 9.7 ± 2, 9.9 ± 2, and 13.1 ± 3 nm for PMNC25, PMNC12, and PMNC5, respectively. Conductivity values of PANI, PMNC25, PMNC12 and PMNC5 were 7.96 ×10⁻⁴, 1.38 ×10⁻⁴, 2.19 ×10⁻⁴ and 2.31 ×10⁻⁴ S/cm, respectively. ESR indicated cationic radicals responsible for conductivity. Saturation magnetization (Ms) for MNPs, PMNC25, PMNC12 and PMNC5 were 93.4, 24.6, 11.8 and 5.6 emu/g, respectively, with superparamagnetic behavior observed. Our findings show that incorporating MNPs into the PANI matrix modulates electrical conductivity and magnetic properties while maintaining the nanocomposite’s structure, highlighting the multifunctional potential of these composites.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.