设计新型混合配体 Ni-MOF/MWCNT 纳米复合材料以提高超级电容器的电化学性能

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Synthetic Metals Pub Date : 2024-07-22 DOI:10.1016/j.synthmet.2024.117702
Sana Yazdani , Mohammad Soleimani Lashkenari , Foad Mehri
{"title":"设计新型混合配体 Ni-MOF/MWCNT 纳米复合材料以提高超级电容器的电化学性能","authors":"Sana Yazdani ,&nbsp;Mohammad Soleimani Lashkenari ,&nbsp;Foad Mehri","doi":"10.1016/j.synthmet.2024.117702","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs) have garnered considerable interest for supercapacitors as electrode materials. Although MOFs possess large pore sizes and high specific surface areas, most MOFs face major challenges due to their inferior stability and low electronic conductivity. In this study, we synthesized Ni-MOF/MWCNT nanocomposite using a mixed-ligand approach through hydrothermal method to provide more redox reaction sites, facilitate ion diffusion, increase the stability, and electronic conductivity of the electrode. Benzoic acid (BA) has partially replaced Benzene-1,3,5-tricarboxylic acid (BTC). BTC has been used to shape Ni-MOF nanosheets into flower-like microspheres, which can reduce the electron/ion diffusion path. The introduction of BA and combination of MWCNT and Ni-MOF result in high electric conductivity. Furthermore, the combination of two organic ligands, and the synergistic effect of MWCNTs and Ni-based MOFs lead to excellent electrochemical performance. The prepared Ni-MOF/MWCNT nanocomposite shows an outstanding capacitance of 900 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and excellent cycling stability with 82 % capacity etention over 1000 cycles. This study presents an innovative strategy for enhancing energy storage performance.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"307 ","pages":"Article 117702"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design a novel mixed-ligand Ni-MOF/MWCNT nanocomposite to enhance the electrochemical performance of supercapacitors\",\"authors\":\"Sana Yazdani ,&nbsp;Mohammad Soleimani Lashkenari ,&nbsp;Foad Mehri\",\"doi\":\"10.1016/j.synthmet.2024.117702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-organic frameworks (MOFs) have garnered considerable interest for supercapacitors as electrode materials. Although MOFs possess large pore sizes and high specific surface areas, most MOFs face major challenges due to their inferior stability and low electronic conductivity. In this study, we synthesized Ni-MOF/MWCNT nanocomposite using a mixed-ligand approach through hydrothermal method to provide more redox reaction sites, facilitate ion diffusion, increase the stability, and electronic conductivity of the electrode. Benzoic acid (BA) has partially replaced Benzene-1,3,5-tricarboxylic acid (BTC). BTC has been used to shape Ni-MOF nanosheets into flower-like microspheres, which can reduce the electron/ion diffusion path. The introduction of BA and combination of MWCNT and Ni-MOF result in high electric conductivity. Furthermore, the combination of two organic ligands, and the synergistic effect of MWCNTs and Ni-based MOFs lead to excellent electrochemical performance. The prepared Ni-MOF/MWCNT nanocomposite shows an outstanding capacitance of 900 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and excellent cycling stability with 82 % capacity etention over 1000 cycles. This study presents an innovative strategy for enhancing energy storage performance.</p></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"307 \",\"pages\":\"Article 117702\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677924001644\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924001644","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)作为电极材料在超级电容器领域引起了广泛关注。虽然 MOFs 具有大孔径和高比表面积,但由于其稳定性差、电子传导性低,大多数 MOFs 都面临着重大挑战。在本研究中,我们采用混合配体的方法,通过水热法合成了 Ni-MOF/MWCNT 纳米复合材料,以提供更多的氧化还原反应位点,促进离子扩散,提高电极的稳定性和电子导电性。苯甲酸(BA)部分取代了苯-1,3,5-三羧酸(BTC)。BTC 被用来将 Ni-MOF 纳米片形成花状微球,从而减少电子/离子扩散路径。引入 BA 并将 MWCNT 和 Ni-MOF 结合在一起,可实现高导电性。此外,两种有机配体的结合以及 MWCNTs 和镍基 MOFs 的协同作用也带来了优异的电化学性能。所制备的 Ni-MOF/MWCNT 纳米复合材料在 0.5 A g 时的电容高达 900 F g,循环稳定性极佳,1000 次循环的容量保持率高达 82%。这项研究提出了一种提高储能性能的创新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design a novel mixed-ligand Ni-MOF/MWCNT nanocomposite to enhance the electrochemical performance of supercapacitors

Metal-organic frameworks (MOFs) have garnered considerable interest for supercapacitors as electrode materials. Although MOFs possess large pore sizes and high specific surface areas, most MOFs face major challenges due to their inferior stability and low electronic conductivity. In this study, we synthesized Ni-MOF/MWCNT nanocomposite using a mixed-ligand approach through hydrothermal method to provide more redox reaction sites, facilitate ion diffusion, increase the stability, and electronic conductivity of the electrode. Benzoic acid (BA) has partially replaced Benzene-1,3,5-tricarboxylic acid (BTC). BTC has been used to shape Ni-MOF nanosheets into flower-like microspheres, which can reduce the electron/ion diffusion path. The introduction of BA and combination of MWCNT and Ni-MOF result in high electric conductivity. Furthermore, the combination of two organic ligands, and the synergistic effect of MWCNTs and Ni-based MOFs lead to excellent electrochemical performance. The prepared Ni-MOF/MWCNT nanocomposite shows an outstanding capacitance of 900 F g−1 at 0.5 A g−1 and excellent cycling stability with 82 % capacity etention over 1000 cycles. This study presents an innovative strategy for enhancing energy storage performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
期刊最新文献
Innovations in carbon nanotube polymer composites: Electrical, thermal, and mechanical advancements for aerospace and automotive applications Enhanced performance of solution-processed organic light-emitting diodes with TEMPOL derivatives Editorial Board Dimethoxyphenoxy alpha-substituted metal-free, and metal phthalocyanines: Electrochemical redox, in-situ spectroelectrochemical and electrochromic properties Potentiostatic synthesis of polyaniline zinc and iron oxide composites for energy storage applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1