Dipankar Shakya;Mingjun Ying;Theodore S. Rappaport;Hitesh Poddar;Peijie Ma;Yanbo Wang;Idris Al-Wazani
{"title":"用于 5G 和 6G 的 FR1(C) 和 FR3 中低频段和中高频段传播和材料穿透损耗综合测量以及室内环境中的信道模型","authors":"Dipankar Shakya;Mingjun Ying;Theodore S. Rappaport;Hitesh Poddar;Peijie Ma;Yanbo Wang;Idris Al-Wazani","doi":"10.1109/OJCOMS.2024.3431686","DOIUrl":null,"url":null,"abstract":"Wide bandwidth requirements for multi-Gbps communications have prompted the global telecommunications industry to consider new mid-band spectrum allocations in the 4–8 GHz FR1(C) and 7–24 GHz FR3 bands, above the crowded bands below 6 GHz. Allocations in the lower and upper mid-band aim to balance coverage and capacity, but there is limited knowledge about the radio propagation characteristics in the 4–24 GHz frequency bands. Here we present the world’s first comprehensive indoor propagation measurement and channel modeling study at 6.75 GHz and 16.95 GHz in mid-band spectrum conducted at the NYU WIRELESS Research Center spanning distances from 11–97 m using 31 dBm EIRP transmit power with 15 and 20 dBi gain rotatable horn antennas at 6.75 GHz and 16.95 GHz, respectively. Analysis of the omnidirectional and directional propagation path loss using the close-in free space model with 1 m reference distance reveals a familiar waveguiding effect in indoor environments for line-of-sight (LOS). Compared to mmWave frequencies, the omnidirectional LOS and non-LOS (NLOS) path loss exponents (PLE) are similar, when using a close-in 1 m free space path loss reference distance model. Observations of the omnidirectional and directional RMS delay spread (DS) at FR1(C) and FR3 as compared to mmWave and sub-THz frequencies indicate decreasing RMS DS as the carrier frequency is increased. The RMS angular spreads (AS) at 6.75 GHz are found to be wider compared to 16.95 GHz, showing greater number of multipath components from a broader set of directions in the azimuthal spatial plane when compared to higher frequencies. This work also presents results from extensive material penetration loss measurements at 6.75 GHz and 16.95 GHz using co and cross polarized antenna configurations for ten common construction materials found inside buildings and on building perimeters, including concrete walls, low-emissivity glass, wood, doors, drywall, and whiteboard. Our findings show penetration loss increases with frequency for all of the ten materials and partitions tested, and suggest further investigation of 3GPP material penetration loss models for at least infrared reflective (IRR) glass and concrete may be necessary. The empirical data and resulting models for radio propagation and penetration loss presented in this paper provide critical information for future 5G and 6G wireless communications.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605910","citationCount":"0","resultStr":"{\"title\":\"Comprehensive FR1(C) and FR3 Lower and Upper Mid-Band Propagation and Material Penetration Loss Measurements and Channel Models in Indoor Environment for 5G and 6G\",\"authors\":\"Dipankar Shakya;Mingjun Ying;Theodore S. Rappaport;Hitesh Poddar;Peijie Ma;Yanbo Wang;Idris Al-Wazani\",\"doi\":\"10.1109/OJCOMS.2024.3431686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide bandwidth requirements for multi-Gbps communications have prompted the global telecommunications industry to consider new mid-band spectrum allocations in the 4–8 GHz FR1(C) and 7–24 GHz FR3 bands, above the crowded bands below 6 GHz. Allocations in the lower and upper mid-band aim to balance coverage and capacity, but there is limited knowledge about the radio propagation characteristics in the 4–24 GHz frequency bands. Here we present the world’s first comprehensive indoor propagation measurement and channel modeling study at 6.75 GHz and 16.95 GHz in mid-band spectrum conducted at the NYU WIRELESS Research Center spanning distances from 11–97 m using 31 dBm EIRP transmit power with 15 and 20 dBi gain rotatable horn antennas at 6.75 GHz and 16.95 GHz, respectively. Analysis of the omnidirectional and directional propagation path loss using the close-in free space model with 1 m reference distance reveals a familiar waveguiding effect in indoor environments for line-of-sight (LOS). Compared to mmWave frequencies, the omnidirectional LOS and non-LOS (NLOS) path loss exponents (PLE) are similar, when using a close-in 1 m free space path loss reference distance model. Observations of the omnidirectional and directional RMS delay spread (DS) at FR1(C) and FR3 as compared to mmWave and sub-THz frequencies indicate decreasing RMS DS as the carrier frequency is increased. The RMS angular spreads (AS) at 6.75 GHz are found to be wider compared to 16.95 GHz, showing greater number of multipath components from a broader set of directions in the azimuthal spatial plane when compared to higher frequencies. This work also presents results from extensive material penetration loss measurements at 6.75 GHz and 16.95 GHz using co and cross polarized antenna configurations for ten common construction materials found inside buildings and on building perimeters, including concrete walls, low-emissivity glass, wood, doors, drywall, and whiteboard. Our findings show penetration loss increases with frequency for all of the ten materials and partitions tested, and suggest further investigation of 3GPP material penetration loss models for at least infrared reflective (IRR) glass and concrete may be necessary. The empirical data and resulting models for radio propagation and penetration loss presented in this paper provide critical information for future 5G and 6G wireless communications.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605910\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605910/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10605910/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comprehensive FR1(C) and FR3 Lower and Upper Mid-Band Propagation and Material Penetration Loss Measurements and Channel Models in Indoor Environment for 5G and 6G
Wide bandwidth requirements for multi-Gbps communications have prompted the global telecommunications industry to consider new mid-band spectrum allocations in the 4–8 GHz FR1(C) and 7–24 GHz FR3 bands, above the crowded bands below 6 GHz. Allocations in the lower and upper mid-band aim to balance coverage and capacity, but there is limited knowledge about the radio propagation characteristics in the 4–24 GHz frequency bands. Here we present the world’s first comprehensive indoor propagation measurement and channel modeling study at 6.75 GHz and 16.95 GHz in mid-band spectrum conducted at the NYU WIRELESS Research Center spanning distances from 11–97 m using 31 dBm EIRP transmit power with 15 and 20 dBi gain rotatable horn antennas at 6.75 GHz and 16.95 GHz, respectively. Analysis of the omnidirectional and directional propagation path loss using the close-in free space model with 1 m reference distance reveals a familiar waveguiding effect in indoor environments for line-of-sight (LOS). Compared to mmWave frequencies, the omnidirectional LOS and non-LOS (NLOS) path loss exponents (PLE) are similar, when using a close-in 1 m free space path loss reference distance model. Observations of the omnidirectional and directional RMS delay spread (DS) at FR1(C) and FR3 as compared to mmWave and sub-THz frequencies indicate decreasing RMS DS as the carrier frequency is increased. The RMS angular spreads (AS) at 6.75 GHz are found to be wider compared to 16.95 GHz, showing greater number of multipath components from a broader set of directions in the azimuthal spatial plane when compared to higher frequencies. This work also presents results from extensive material penetration loss measurements at 6.75 GHz and 16.95 GHz using co and cross polarized antenna configurations for ten common construction materials found inside buildings and on building perimeters, including concrete walls, low-emissivity glass, wood, doors, drywall, and whiteboard. Our findings show penetration loss increases with frequency for all of the ten materials and partitions tested, and suggest further investigation of 3GPP material penetration loss models for at least infrared reflective (IRR) glass and concrete may be necessary. The empirical data and resulting models for radio propagation and penetration loss presented in this paper provide critical information for future 5G and 6G wireless communications.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.