目前对污水污泥水热处理过程中污染物归宿的认识

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Current Opinion in Green and Sustainable Chemistry Pub Date : 2024-07-22 DOI:10.1016/j.cogsc.2024.100960
Kamrun Nahar , Adhithiya Venkatachalapati Thulasiraman , Arun Krishna Vuppaladadiyam , Ibrahim Gbolahan Hakeem , Kalpit Shah
{"title":"目前对污水污泥水热处理过程中污染物归宿的认识","authors":"Kamrun Nahar ,&nbsp;Adhithiya Venkatachalapati Thulasiraman ,&nbsp;Arun Krishna Vuppaladadiyam ,&nbsp;Ibrahim Gbolahan Hakeem ,&nbsp;Kalpit Shah","doi":"10.1016/j.cogsc.2024.100960","DOIUrl":null,"url":null,"abstract":"<div><p>Sewage sludges (SS) are by-products of the wastewater treatment process and are considered critical source of contaminants as they contain a diverse range of microbial, organic, and inorganic pollutants that are concerning to public health and the environment. Hydrothermal processes are particularly suitable for treating SS; however, their viability for the effective degradation and potential destruction of persistent contaminants, such as heavy metals, microbial pathogens, microplastics, per- and polyfluoroalkyl substances, pharmaceuticals, and personal care products, among others in SS is still under rapid investigations. This article reviews the source, transformation, and fate of prominent contaminants in SS during hydrothermal treatment (HT). Most contaminants in SS are to a certain extent degraded or transformed into other products under typical HT at subcritical conditions. Transformation pathways can be complex due to the diverse physicochemical and biochemical properties, including thermal stability and hydrophobicity. Critical findings were summarised with conclusions and perspectives for future works provided.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"49 ","pages":"Article 100960"},"PeriodicalIF":9.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452223624000816/pdfft?md5=0039fac13250925bb9b21122ae198360&pid=1-s2.0-S2452223624000816-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Current understanding on the fate of contaminants during hydrothermal treatment of sewage sludge\",\"authors\":\"Kamrun Nahar ,&nbsp;Adhithiya Venkatachalapati Thulasiraman ,&nbsp;Arun Krishna Vuppaladadiyam ,&nbsp;Ibrahim Gbolahan Hakeem ,&nbsp;Kalpit Shah\",\"doi\":\"10.1016/j.cogsc.2024.100960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sewage sludges (SS) are by-products of the wastewater treatment process and are considered critical source of contaminants as they contain a diverse range of microbial, organic, and inorganic pollutants that are concerning to public health and the environment. Hydrothermal processes are particularly suitable for treating SS; however, their viability for the effective degradation and potential destruction of persistent contaminants, such as heavy metals, microbial pathogens, microplastics, per- and polyfluoroalkyl substances, pharmaceuticals, and personal care products, among others in SS is still under rapid investigations. This article reviews the source, transformation, and fate of prominent contaminants in SS during hydrothermal treatment (HT). Most contaminants in SS are to a certain extent degraded or transformed into other products under typical HT at subcritical conditions. Transformation pathways can be complex due to the diverse physicochemical and biochemical properties, including thermal stability and hydrophobicity. Critical findings were summarised with conclusions and perspectives for future works provided.</p></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"49 \",\"pages\":\"Article 100960\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000816/pdfft?md5=0039fac13250925bb9b21122ae198360&pid=1-s2.0-S2452223624000816-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000816\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000816","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

污水淤泥(SS)是废水处理过程中产生的副产品,被认为是重要的污染物来源,因为它们含有多种多样的微生物、有机和无机污染物,对公众健康和环境都有影响。水热法尤其适用于处理 SS,但其有效降解和潜在破坏 SS 中重金属、微生物病原体、微塑料、全氟和多氟烷基物质、药品和个人护理产品等持久性污染物的可行性仍在快速研究中。本文综述了水热处理(HT)过程中 SS 中主要污染物的来源、转化和归宿。在典型的亚临界状态下进行水热处理时,固态金属中的大多数污染物都会在一定程度上降解或转化为其他产物。由于物理化学和生物化学特性(包括热稳定性和疏水性)的不同,转化途径可能非常复杂。对重要发现进行了总结,并提出了结论和对未来工作的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current understanding on the fate of contaminants during hydrothermal treatment of sewage sludge

Sewage sludges (SS) are by-products of the wastewater treatment process and are considered critical source of contaminants as they contain a diverse range of microbial, organic, and inorganic pollutants that are concerning to public health and the environment. Hydrothermal processes are particularly suitable for treating SS; however, their viability for the effective degradation and potential destruction of persistent contaminants, such as heavy metals, microbial pathogens, microplastics, per- and polyfluoroalkyl substances, pharmaceuticals, and personal care products, among others in SS is still under rapid investigations. This article reviews the source, transformation, and fate of prominent contaminants in SS during hydrothermal treatment (HT). Most contaminants in SS are to a certain extent degraded or transformed into other products under typical HT at subcritical conditions. Transformation pathways can be complex due to the diverse physicochemical and biochemical properties, including thermal stability and hydrophobicity. Critical findings were summarised with conclusions and perspectives for future works provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
期刊最新文献
Recent advances in plasma-based methane reforming for syngas production Green ammonia synthesis technology that does not require H2 gas: Reaction technology and prospects for ammonia synthesis using H2O as a direct hydrogen source Machine learning to support prospective life cycle assessment of emerging chemical technologies Plasma treating water for nitrate based nitrogen fertilizer - A review of recent device designs Atmospheric-pressure plasmas for NOx production: Short review on current status
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1