动物抗生素的使用导致人类感染产生抗生素耐药性:来自丹麦的小组证据

IF 4.1 2区 医学 Q1 INFECTIOUS DISEASES One Health Pub Date : 2024-07-22 DOI:10.1016/j.onehlt.2024.100856
{"title":"动物抗生素的使用导致人类感染产生抗生素耐药性:来自丹麦的小组证据","authors":"","doi":"10.1016/j.onehlt.2024.100856","DOIUrl":null,"url":null,"abstract":"<div><p>Antibiotic use (ABU) in animals is postulated to be a major contributor to selection of antibiotic resistance (ABR) which subsequently causes infections in human populations. However, there are few quantifications of the size of this association. Denmark, as a country with high levels of pig production and strong ABR surveillance data, is an ideal case study for exploring this association.</p><p>This study compiles a dataset on ABU across several animal species and antibiotic classes, and data on the rate of antibiotic resistance (ABR) in humans across key pathogens, in Denmark over time (2010−2020). Panel data regressions (fixed effects, random effects, first difference and pooled ordinary least squares) were used to test the association between the level of ABR in human isolates and the level of ABU in animals.</p><p>A positive relationship was identified between ABR in humans and ABU in cattle, with some evidence of a positive relationship for poultry and companion animals, and a negative relationship for fish, although the latter is likely driven by confounding factors. When lagging ABU by one year, the effect of ABU in cattle and companion animals remained similar, the effect of ABU in poultry fell in size, and ABU in fish was no longer significant, perhaps due to differences in life cycle length among animal species. Additional covariates were explored, including pet populations, agricultural production and GDP per capita (at purchasing power parity), but these results were limited by the statistical power of the dataset. Under all models, animal ABU determined only a minority of the change in human ABR levels in this context with adjusted R<sup>2</sup> ranging from 0.19 to 0.44.</p><p>This paper supports the role of animal ABU in determining human ABR levels but suggests that, despite comprising a large portion of systemwide ABU, it only explains a minority of the variation. This is likely driven in part by data limitations, and could also be due to a persistence of ABR once resistance has emerged, suggesting a significant role for socioeconomic and transmission factors in bringing ABR down to desirable levels.</p></div>","PeriodicalId":19577,"journal":{"name":"One Health","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352771424001824/pdfft?md5=485f48d46ae1ed9ab9a3118337121ef8&pid=1-s2.0-S2352771424001824-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The contribution of animal antibiotic use to antibiotic resistance in human infections: Panel evidence from Denmark\",\"authors\":\"\",\"doi\":\"10.1016/j.onehlt.2024.100856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antibiotic use (ABU) in animals is postulated to be a major contributor to selection of antibiotic resistance (ABR) which subsequently causes infections in human populations. However, there are few quantifications of the size of this association. Denmark, as a country with high levels of pig production and strong ABR surveillance data, is an ideal case study for exploring this association.</p><p>This study compiles a dataset on ABU across several animal species and antibiotic classes, and data on the rate of antibiotic resistance (ABR) in humans across key pathogens, in Denmark over time (2010−2020). Panel data regressions (fixed effects, random effects, first difference and pooled ordinary least squares) were used to test the association between the level of ABR in human isolates and the level of ABU in animals.</p><p>A positive relationship was identified between ABR in humans and ABU in cattle, with some evidence of a positive relationship for poultry and companion animals, and a negative relationship for fish, although the latter is likely driven by confounding factors. When lagging ABU by one year, the effect of ABU in cattle and companion animals remained similar, the effect of ABU in poultry fell in size, and ABU in fish was no longer significant, perhaps due to differences in life cycle length among animal species. Additional covariates were explored, including pet populations, agricultural production and GDP per capita (at purchasing power parity), but these results were limited by the statistical power of the dataset. Under all models, animal ABU determined only a minority of the change in human ABR levels in this context with adjusted R<sup>2</sup> ranging from 0.19 to 0.44.</p><p>This paper supports the role of animal ABU in determining human ABR levels but suggests that, despite comprising a large portion of systemwide ABU, it only explains a minority of the variation. This is likely driven in part by data limitations, and could also be due to a persistence of ABR once resistance has emerged, suggesting a significant role for socioeconomic and transmission factors in bringing ABR down to desirable levels.</p></div>\",\"PeriodicalId\":19577,\"journal\":{\"name\":\"One Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352771424001824/pdfft?md5=485f48d46ae1ed9ab9a3118337121ef8&pid=1-s2.0-S2352771424001824-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"One Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352771424001824\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352771424001824","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

据推测,动物使用抗生素(ABU)是导致抗生素耐药性(ABR)产生的主要因素,而抗生素耐药性随后会导致人类感染。然而,关于这种关联的规模却鲜有量化数据。丹麦是一个生猪生产水平高、抗生素耐药性监测数据强大的国家,是探索这种关联的理想案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The contribution of animal antibiotic use to antibiotic resistance in human infections: Panel evidence from Denmark

Antibiotic use (ABU) in animals is postulated to be a major contributor to selection of antibiotic resistance (ABR) which subsequently causes infections in human populations. However, there are few quantifications of the size of this association. Denmark, as a country with high levels of pig production and strong ABR surveillance data, is an ideal case study for exploring this association.

This study compiles a dataset on ABU across several animal species and antibiotic classes, and data on the rate of antibiotic resistance (ABR) in humans across key pathogens, in Denmark over time (2010−2020). Panel data regressions (fixed effects, random effects, first difference and pooled ordinary least squares) were used to test the association between the level of ABR in human isolates and the level of ABU in animals.

A positive relationship was identified between ABR in humans and ABU in cattle, with some evidence of a positive relationship for poultry and companion animals, and a negative relationship for fish, although the latter is likely driven by confounding factors. When lagging ABU by one year, the effect of ABU in cattle and companion animals remained similar, the effect of ABU in poultry fell in size, and ABU in fish was no longer significant, perhaps due to differences in life cycle length among animal species. Additional covariates were explored, including pet populations, agricultural production and GDP per capita (at purchasing power parity), but these results were limited by the statistical power of the dataset. Under all models, animal ABU determined only a minority of the change in human ABR levels in this context with adjusted R2 ranging from 0.19 to 0.44.

This paper supports the role of animal ABU in determining human ABR levels but suggests that, despite comprising a large portion of systemwide ABU, it only explains a minority of the variation. This is likely driven in part by data limitations, and could also be due to a persistence of ABR once resistance has emerged, suggesting a significant role for socioeconomic and transmission factors in bringing ABR down to desirable levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
One Health
One Health Medicine-Infectious Diseases
CiteScore
8.10
自引率
4.00%
发文量
95
审稿时长
18 weeks
期刊介绍: One Health - a Gold Open Access journal. The mission of One Health is to provide a platform for rapid communication of high quality scientific knowledge on inter- and intra-species pathogen transmission, bringing together leading experts in virology, bacteriology, parasitology, mycology, vectors and vector-borne diseases, tropical health, veterinary sciences, pathology, immunology, food safety, mathematical modelling, epidemiology, public health research and emergency preparedness. As a Gold Open Access journal, a fee is payable on acceptance of the paper. Please see the Guide for Authors for more information. Submissions to the following categories are welcome: Virology, Bacteriology, Parasitology, Mycology, Vectors and vector-borne diseases, Co-infections and co-morbidities, Disease spatial surveillance, Modelling, Tropical Health, Discovery, Ecosystem Health, Public Health.
期刊最新文献
Tick-borne viruses: Epidemiology, pathogenesis, and animal models A 15-day pilot biodiversity intervention with horses in a farm system leads to gut microbiome rewilding in 10 urban Italian children Antibiotic-resistant Escherichia coli from treated municipal wastewaters and Black-headed Gull nestlings on the recipient river How policy advocacy promotes regulated antibiotic use: Evidence from meat duck farmers of China The antimicrobial resistance landscape of slaughterhouses in western Kenya: A microbiological case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1