胚胎胼胝体的低温保存:评估胼胝体年龄对再生的影响;再生体的形态和遗传稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-25 DOI:10.1007/s11240-024-02821-6
Patu Khate Zeliang, A. Pattanayak
{"title":"胚胎胼胝体的低温保存:评估胼胝体年龄对再生的影响;再生体的形态和遗传稳定性","authors":"Patu Khate Zeliang, A. Pattanayak","doi":"10.1007/s11240-024-02821-6","DOIUrl":null,"url":null,"abstract":"<p>Cryopreservation, a widely utilized technique for the long-term preservation of in vitro cultures, effectively arrests metabolic processes, obviating the need for frequent subcultures and mitigating the risk of somaclonal variation. In this study, we applied cryopreservation methods to intact rice (<i>Oryza sativa</i> L.) calli to determine the optimal age for cryopreservation, investigating the timelines for greening and shoot initiation in R0 plants. Results revealed that three-month-old calli exhibited the highest regeneration percentage, with greening observed within twelve days and shoot initiation within fifteen days. Using 3% mannitol in the callus culture medium provided osmotic stress, aiding in the formation of compact calli masses suitable for regeneration. Vitrification with cryoprotectants (DMSO, PEG, and glucose) and gradual dehydration improved cell survival. Thawing and post-thaw damage were minimized using rapid thawing, fast cryoprotectant removal, and gradual rehydration. We assessed the phenotypic variations in R1 and R2 generation and genotypic fidelity of regenerants in R1. Phenotypic variations from seed-derived plants were observed in seed characters both in vitrified and cryopreserved calli-derived plants. However, these variations were unstable and disappeared in the R2. SSR markers were used to detect genetic variations in R1, with results showing a 3.6% change in vitrified calli-derived plants and an 8.61% change in cryopreservation-derived plants, likely due to reversible DNA methylation or SNPs in non-coding region. Our study confirms the feasibility of cryopreservation for rice calli, ensuring high regeneration rates and minimal long-term genetic variations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryopreservation of embryogenic callus in Oryza sativa L.: Assessment of impact of callus age on regeneration; morphological and genetic stability regenerants\",\"authors\":\"Patu Khate Zeliang, A. Pattanayak\",\"doi\":\"10.1007/s11240-024-02821-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cryopreservation, a widely utilized technique for the long-term preservation of in vitro cultures, effectively arrests metabolic processes, obviating the need for frequent subcultures and mitigating the risk of somaclonal variation. In this study, we applied cryopreservation methods to intact rice (<i>Oryza sativa</i> L.) calli to determine the optimal age for cryopreservation, investigating the timelines for greening and shoot initiation in R0 plants. Results revealed that three-month-old calli exhibited the highest regeneration percentage, with greening observed within twelve days and shoot initiation within fifteen days. Using 3% mannitol in the callus culture medium provided osmotic stress, aiding in the formation of compact calli masses suitable for regeneration. Vitrification with cryoprotectants (DMSO, PEG, and glucose) and gradual dehydration improved cell survival. Thawing and post-thaw damage were minimized using rapid thawing, fast cryoprotectant removal, and gradual rehydration. We assessed the phenotypic variations in R1 and R2 generation and genotypic fidelity of regenerants in R1. Phenotypic variations from seed-derived plants were observed in seed characters both in vitrified and cryopreserved calli-derived plants. However, these variations were unstable and disappeared in the R2. SSR markers were used to detect genetic variations in R1, with results showing a 3.6% change in vitrified calli-derived plants and an 8.61% change in cryopreservation-derived plants, likely due to reversible DNA methylation or SNPs in non-coding region. Our study confirms the feasibility of cryopreservation for rice calli, ensuring high regeneration rates and minimal long-term genetic variations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02821-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02821-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

低温保存是一种广泛应用的长期保存体外培养物的技术,它能有效地阻止新陈代谢过程,从而避免了频繁的移栽,降低了体细胞变异的风险。在本研究中,我们对完整的水稻(Oryza sativa L.)胼胝体采用了低温保存方法,以确定低温保存的最佳年龄,并研究了 R0 植株的返青和发芽时间。结果显示,三个月龄的胼胝体显示出最高的再生率,在十二天内观察到绿色,在十五天内观察到嫩芽萌发。在胼胝体培养基中使用 3% 的甘露醇可提供渗透压,有助于形成适合再生的紧凑胼胝体块。使用低温保护剂(DMSO、PEG 和葡萄糖)进行玻璃化和逐渐脱水可提高细胞存活率。通过快速解冻、快速移除低温保护剂和逐步脱水,解冻和解冻后的损伤可降至最低。我们评估了 R1 和 R2 代的表型变化以及 R1 代再生体的基因型保真度。在玻璃化和低温保存的胼胝体衍生植株的种子特征中都观察到了与种子衍生植株的表型变异。然而,这些变异并不稳定,在 R2 中消失了。使用 SSR 标记检测 R1 中的遗传变异,结果显示玻璃化胼胝体衍生植株的变化率为 3.6%,冷冻衍生植株的变化率为 8.61%,这可能是由于可逆的 DNA 甲基化或非编码区的 SNP 所致。我们的研究证实了冷冻保存水稻胼胝体的可行性,确保了高再生率和最小的长期遗传变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cryopreservation of embryogenic callus in Oryza sativa L.: Assessment of impact of callus age on regeneration; morphological and genetic stability regenerants

Cryopreservation, a widely utilized technique for the long-term preservation of in vitro cultures, effectively arrests metabolic processes, obviating the need for frequent subcultures and mitigating the risk of somaclonal variation. In this study, we applied cryopreservation methods to intact rice (Oryza sativa L.) calli to determine the optimal age for cryopreservation, investigating the timelines for greening and shoot initiation in R0 plants. Results revealed that three-month-old calli exhibited the highest regeneration percentage, with greening observed within twelve days and shoot initiation within fifteen days. Using 3% mannitol in the callus culture medium provided osmotic stress, aiding in the formation of compact calli masses suitable for regeneration. Vitrification with cryoprotectants (DMSO, PEG, and glucose) and gradual dehydration improved cell survival. Thawing and post-thaw damage were minimized using rapid thawing, fast cryoprotectant removal, and gradual rehydration. We assessed the phenotypic variations in R1 and R2 generation and genotypic fidelity of regenerants in R1. Phenotypic variations from seed-derived plants were observed in seed characters both in vitrified and cryopreserved calli-derived plants. However, these variations were unstable and disappeared in the R2. SSR markers were used to detect genetic variations in R1, with results showing a 3.6% change in vitrified calli-derived plants and an 8.61% change in cryopreservation-derived plants, likely due to reversible DNA methylation or SNPs in non-coding region. Our study confirms the feasibility of cryopreservation for rice calli, ensuring high regeneration rates and minimal long-term genetic variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1