利用随机块网络对 VAR 精确矩阵进行贝叶斯建模

Florian Huber, Gary Koop, Massimiliano Marcellino, Tobias Scheckel
{"title":"利用随机块网络对 VAR 精确矩阵进行贝叶斯建模","authors":"Florian Huber, Gary Koop, Massimiliano Marcellino, Tobias Scheckel","doi":"arxiv-2407.16349","DOIUrl":null,"url":null,"abstract":"Commonly used priors for Vector Autoregressions (VARs) induce shrinkage on\nthe autoregressive coefficients. Introducing shrinkage on the error covariance\nmatrix is sometimes done but, in the vast majority of cases, without\nconsidering the network structure of the shocks and by placing the prior on the\nlower Cholesky factor of the precision matrix. In this paper, we propose a\nprior on the VAR error precision matrix directly. Our prior, which resembles a\nstandard spike and slab prior, models variable inclusion probabilities through\na stochastic block model that clusters shocks into groups. Within groups, the\nprobability of having relations across group members is higher (inducing less\nsparsity) whereas relations across groups imply a lower probability that\nmembers of each group are conditionally related. We show in simulations that\nour approach recovers the true network structure well. Using a US macroeconomic\ndata set, we illustrate how our approach can be used to cluster shocks together\nand that this feature leads to improved density forecasts.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"306 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian modelling of VAR precision matrices using stochastic block networks\",\"authors\":\"Florian Huber, Gary Koop, Massimiliano Marcellino, Tobias Scheckel\",\"doi\":\"arxiv-2407.16349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commonly used priors for Vector Autoregressions (VARs) induce shrinkage on\\nthe autoregressive coefficients. Introducing shrinkage on the error covariance\\nmatrix is sometimes done but, in the vast majority of cases, without\\nconsidering the network structure of the shocks and by placing the prior on the\\nlower Cholesky factor of the precision matrix. In this paper, we propose a\\nprior on the VAR error precision matrix directly. Our prior, which resembles a\\nstandard spike and slab prior, models variable inclusion probabilities through\\na stochastic block model that clusters shocks into groups. Within groups, the\\nprobability of having relations across group members is higher (inducing less\\nsparsity) whereas relations across groups imply a lower probability that\\nmembers of each group are conditionally related. We show in simulations that\\nour approach recovers the true network structure well. Using a US macroeconomic\\ndata set, we illustrate how our approach can be used to cluster shocks together\\nand that this feature leads to improved density forecasts.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"306 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矢量自回归(VAR)常用的先验值会引起自回归系数的收缩。有时也会在误差协方差矩阵上引入收缩,但在绝大多数情况下,都没有考虑冲击的网络结构,而是将先验值置于精度矩阵的较低 Cholesky 因子上。在本文中,我们直接提出了 VAR 误差精度矩阵的先验值。我们的先验类似于标准的尖峰先验和板块先验,通过随机块模型对变量包含概率进行建模,将冲击聚类成组。在组内,组内成员之间存在关系的概率较高(导致较低的稀疏性),而组间关系则意味着每个组的成员之间存在条件关系的概率较低。我们的模拟结果表明,我们的方法很好地还原了真实的网络结构。通过使用美国宏观经济数据集,我们说明了如何使用我们的方法将冲击聚集在一起,并说明这一特征可以改善密度预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian modelling of VAR precision matrices using stochastic block networks
Commonly used priors for Vector Autoregressions (VARs) induce shrinkage on the autoregressive coefficients. Introducing shrinkage on the error covariance matrix is sometimes done but, in the vast majority of cases, without considering the network structure of the shocks and by placing the prior on the lower Cholesky factor of the precision matrix. In this paper, we propose a prior on the VAR error precision matrix directly. Our prior, which resembles a standard spike and slab prior, models variable inclusion probabilities through a stochastic block model that clusters shocks into groups. Within groups, the probability of having relations across group members is higher (inducing less sparsity) whereas relations across groups imply a lower probability that members of each group are conditionally related. We show in simulations that our approach recovers the true network structure well. Using a US macroeconomic data set, we illustrate how our approach can be used to cluster shocks together and that this feature leads to improved density forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1