贵金属多孔催化剂的催化加氢处理性能

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2024-07-24 DOI:10.1007/s10562-024-04785-w
Verónica A. Valles, Brenda C. Ledesma, Lorena P. Rivoira, Marcos B. Gómez Costa, Andrea R. Beltramone
{"title":"贵金属多孔催化剂的催化加氢处理性能","authors":"Verónica A. Valles,&nbsp;Brenda C. Ledesma,&nbsp;Lorena P. Rivoira,&nbsp;Marcos B. Gómez Costa,&nbsp;Andrea R. Beltramone","doi":"10.1007/s10562-024-04785-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the performance of a series of noble metal catalysts supported on the SBA-16 mesoporous matrix was studied. Its activity was measured in catalytic hydrotreating (HDT) reactions, such as tetralin hydrogenation in a batch reactor. The results were adjusted with a pseudo first order equation and then, the most active catalysts were tested in a continuous flow reactor under industrial-like conditions. Noble metal catalysts were synthesized, mainly monometallic iridium and bimetallic iridium-platinum and iridium-palladium supported SBA-16. The support was also modified with aluminum to provide Bronsted and Lewis acidity to the catalysts. All the catalysts were characterized by FTIR, XRD, NMR, N<sub>2</sub> isotherms, H<sub>2</sub> chemisorption, TPR and XPS to be able to relate the activity with the nature of the catalyst. The catalyst modified with 0.5 wt% of Ir, 0.5 wt% of Pt and 3 wt% of Al supported over SBA-16 matrix was the most active in tetralin hydrogenation to decalins in a Batch reactor, achieving the higher kinetic constant of 0.012 min<sup>−1</sup> and 90% of conversion to fully hydrogenated decalins at 120 min of reaction time. This catalyst also was the most active in the hydrogenation of tetralin using a continuous flow reactor obtaining the highest kinetic constant of all the catalysts tested with a value of 0.152 mol/h g cat. and achieving 90% of conversion to decalins at W/F = 150. Its greater activity was explained in terms of greater hydrogenating capacity, better dispersion of the active species, and greater resistance to deactivation thanks to the protective effect of the bimetallic alloy formed in synergy with a greater acidity of the aluminum-modified support. In this work, optimization has been achieved in the synthesis of an active, selective, contaminant-resistant catalyst with great stability. Very good results were obtained in a continuous process under conditions like to industrial ones.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"154 11","pages":"5921 - 5940"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic Hydrotreating Process Performance Over Noble Metal-Mesoporous Catalysts\",\"authors\":\"Verónica A. Valles,&nbsp;Brenda C. Ledesma,&nbsp;Lorena P. Rivoira,&nbsp;Marcos B. Gómez Costa,&nbsp;Andrea R. Beltramone\",\"doi\":\"10.1007/s10562-024-04785-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the performance of a series of noble metal catalysts supported on the SBA-16 mesoporous matrix was studied. Its activity was measured in catalytic hydrotreating (HDT) reactions, such as tetralin hydrogenation in a batch reactor. The results were adjusted with a pseudo first order equation and then, the most active catalysts were tested in a continuous flow reactor under industrial-like conditions. Noble metal catalysts were synthesized, mainly monometallic iridium and bimetallic iridium-platinum and iridium-palladium supported SBA-16. The support was also modified with aluminum to provide Bronsted and Lewis acidity to the catalysts. All the catalysts were characterized by FTIR, XRD, NMR, N<sub>2</sub> isotherms, H<sub>2</sub> chemisorption, TPR and XPS to be able to relate the activity with the nature of the catalyst. The catalyst modified with 0.5 wt% of Ir, 0.5 wt% of Pt and 3 wt% of Al supported over SBA-16 matrix was the most active in tetralin hydrogenation to decalins in a Batch reactor, achieving the higher kinetic constant of 0.012 min<sup>−1</sup> and 90% of conversion to fully hydrogenated decalins at 120 min of reaction time. This catalyst also was the most active in the hydrogenation of tetralin using a continuous flow reactor obtaining the highest kinetic constant of all the catalysts tested with a value of 0.152 mol/h g cat. and achieving 90% of conversion to decalins at W/F = 150. Its greater activity was explained in terms of greater hydrogenating capacity, better dispersion of the active species, and greater resistance to deactivation thanks to the protective effect of the bimetallic alloy formed in synergy with a greater acidity of the aluminum-modified support. In this work, optimization has been achieved in the synthesis of an active, selective, contaminant-resistant catalyst with great stability. Very good results were obtained in a continuous process under conditions like to industrial ones.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":\"154 11\",\"pages\":\"5921 - 5940\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-024-04785-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04785-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,研究了一系列以 SBA-16 介孔基质为支撑的贵金属催化剂的性能。在催化加氢处理 (HDT) 反应(如间歇反应器中的四氢萘加氢)中测量了催化剂的活性。结果用伪一阶方程进行了调整,然后在类似工业条件下的连续流动反应器中测试了活性最高的催化剂。合成的贵金属催化剂主要是单金属铱、双金属铱-铂和铱-钯支撑的 SBA-16。还用铝对载体进行了改性,使催化剂具有勃朗斯特和路易斯酸性。所有催化剂都通过傅立叶变换红外光谱、X 射线衍射、核磁共振、N2 等温线、H2 化学吸附、TPR 和 XPS 进行了表征,以便将催化剂的活性与催化剂的性质联系起来。在批式反应器中,以 SBA-16 为基质、添加了 0.5 wt% 的 Ir、0.5 wt% 的 Pt 和 3 wt% 的 Al 的改性催化剂在四氢呋喃氢化成癸精的过程中活性最高,达到了 0.012 min-1 的较高动力学常数,并在 120 分钟的反应时间内实现了 90% 的完全氢化癸精转化率。在使用连续流反应器氢化四氢萘时,这种催化剂的活性也是最高的,在所有测试催化剂中获得了最高的动力学常数(0.152 mol/h g cat.),并在 W/F = 150 时实现了 90% 的癸精转化率。这种催化剂具有更高的活性,这是因为它具有更强的氢化能力,活性物质的分散性更好,而且由于铝改性载体的酸性更强,形成的双金属合金具有保护作用,因而具有更强的抗失活能力。在这项工作中,我们优化了活性、选择性、抗污染和高稳定性催化剂的合成。在类似工业条件下的连续生产过程中取得了非常好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic Hydrotreating Process Performance Over Noble Metal-Mesoporous Catalysts

In this work, the performance of a series of noble metal catalysts supported on the SBA-16 mesoporous matrix was studied. Its activity was measured in catalytic hydrotreating (HDT) reactions, such as tetralin hydrogenation in a batch reactor. The results were adjusted with a pseudo first order equation and then, the most active catalysts were tested in a continuous flow reactor under industrial-like conditions. Noble metal catalysts were synthesized, mainly monometallic iridium and bimetallic iridium-platinum and iridium-palladium supported SBA-16. The support was also modified with aluminum to provide Bronsted and Lewis acidity to the catalysts. All the catalysts were characterized by FTIR, XRD, NMR, N2 isotherms, H2 chemisorption, TPR and XPS to be able to relate the activity with the nature of the catalyst. The catalyst modified with 0.5 wt% of Ir, 0.5 wt% of Pt and 3 wt% of Al supported over SBA-16 matrix was the most active in tetralin hydrogenation to decalins in a Batch reactor, achieving the higher kinetic constant of 0.012 min−1 and 90% of conversion to fully hydrogenated decalins at 120 min of reaction time. This catalyst also was the most active in the hydrogenation of tetralin using a continuous flow reactor obtaining the highest kinetic constant of all the catalysts tested with a value of 0.152 mol/h g cat. and achieving 90% of conversion to decalins at W/F = 150. Its greater activity was explained in terms of greater hydrogenating capacity, better dispersion of the active species, and greater resistance to deactivation thanks to the protective effect of the bimetallic alloy formed in synergy with a greater acidity of the aluminum-modified support. In this work, optimization has been achieved in the synthesis of an active, selective, contaminant-resistant catalyst with great stability. Very good results were obtained in a continuous process under conditions like to industrial ones.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Achieving a Large Reactivity Activity Improvement in Adenine Modified Pd/Co-MOFs Catalyst for Quinoline Hydrogenation Controlled Fabrication of Mo2C/C Nanospheres via Electrospinning Technique as Electrocatalysts for the Hydrogen Evolution Reaction Catalytic Fatty Acid Methyl Esters (FAMEs) Synthesis Using Lepidium aucheri Seed Oil and Its Antibacterial Potential Base-Free Conversion of 1, 2-Propanediol to Methyl Lactate in Methanol Over Cu-Modified Au/ Hydroxylapatite Catalysts Novel Pd-Fe2O3-Ni Electrocatalyst with Low Pd Content for Electrochemical Reduction of 4-Chlorophenol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1