Aulia Arif Wardana, Grzegorz Kołaczek, Arkadiusz Warzyński, Parman Sukarno
{"title":"利用加权集合平均深度神经网络协同入侵检测异构网络中的协同攻击检测","authors":"Aulia Arif Wardana, Grzegorz Kołaczek, Arkadiusz Warzyński, Parman Sukarno","doi":"10.1007/s10207-024-00891-3","DOIUrl":null,"url":null,"abstract":"<p>Detecting coordinated attacks in cybersecurity is challenging due to their sophisticated and distributed nature, making traditional Intrusion Detection Systems often ineffective, especially in heterogeneous networks with diverse devices and systems. This research introduces a novel Collaborative Intrusion Detection System (CIDS) using a Weighted Ensemble Averaging Deep Neural Network (WEA-DNN) designed to detect such attacks. The WEA-DNN combines deep learning techniques and ensemble methods to enhance detection capabilities by integrating multiple Deep Neural Network (DNN) models, each trained on different data subsets with varying architectures. Differential Evolution optimizes the model’s contributions by calculating optimal weights, allowing the system to collaboratively analyze network traffic data from diverse sources. Extensive experiments on real-world datasets like CICIDS2017, CSE-CICIDS2018, CICToNIoT, and CICBotIoT show that the CIDS framework achieves an average accuracy of 93.8%, precision of 78.6%, recall of 60.4%, and an F1-score of 62.4%, surpassing traditional ensemble models and matching the performance of local DNN models. This demonstrates the practical benefits of WEA-DNN in improving detection capabilities in real-world heterogeneous network environments, offering superior adaptability and robustness in handling complex attack patterns.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"94 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative intrusion detection using weighted ensemble averaging deep neural network for coordinated attack detection in heterogeneous network\",\"authors\":\"Aulia Arif Wardana, Grzegorz Kołaczek, Arkadiusz Warzyński, Parman Sukarno\",\"doi\":\"10.1007/s10207-024-00891-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detecting coordinated attacks in cybersecurity is challenging due to their sophisticated and distributed nature, making traditional Intrusion Detection Systems often ineffective, especially in heterogeneous networks with diverse devices and systems. This research introduces a novel Collaborative Intrusion Detection System (CIDS) using a Weighted Ensemble Averaging Deep Neural Network (WEA-DNN) designed to detect such attacks. The WEA-DNN combines deep learning techniques and ensemble methods to enhance detection capabilities by integrating multiple Deep Neural Network (DNN) models, each trained on different data subsets with varying architectures. Differential Evolution optimizes the model’s contributions by calculating optimal weights, allowing the system to collaboratively analyze network traffic data from diverse sources. Extensive experiments on real-world datasets like CICIDS2017, CSE-CICIDS2018, CICToNIoT, and CICBotIoT show that the CIDS framework achieves an average accuracy of 93.8%, precision of 78.6%, recall of 60.4%, and an F1-score of 62.4%, surpassing traditional ensemble models and matching the performance of local DNN models. This demonstrates the practical benefits of WEA-DNN in improving detection capabilities in real-world heterogeneous network environments, offering superior adaptability and robustness in handling complex attack patterns.</p>\",\"PeriodicalId\":50316,\"journal\":{\"name\":\"International Journal of Information Security\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10207-024-00891-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00891-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Collaborative intrusion detection using weighted ensemble averaging deep neural network for coordinated attack detection in heterogeneous network
Detecting coordinated attacks in cybersecurity is challenging due to their sophisticated and distributed nature, making traditional Intrusion Detection Systems often ineffective, especially in heterogeneous networks with diverse devices and systems. This research introduces a novel Collaborative Intrusion Detection System (CIDS) using a Weighted Ensemble Averaging Deep Neural Network (WEA-DNN) designed to detect such attacks. The WEA-DNN combines deep learning techniques and ensemble methods to enhance detection capabilities by integrating multiple Deep Neural Network (DNN) models, each trained on different data subsets with varying architectures. Differential Evolution optimizes the model’s contributions by calculating optimal weights, allowing the system to collaboratively analyze network traffic data from diverse sources. Extensive experiments on real-world datasets like CICIDS2017, CSE-CICIDS2018, CICToNIoT, and CICBotIoT show that the CIDS framework achieves an average accuracy of 93.8%, precision of 78.6%, recall of 60.4%, and an F1-score of 62.4%, surpassing traditional ensemble models and matching the performance of local DNN models. This demonstrates the practical benefits of WEA-DNN in improving detection capabilities in real-world heterogeneous network environments, offering superior adaptability and robustness in handling complex attack patterns.
期刊介绍:
The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation.
Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.