与状态相关的动态管道 MPC:带有扰动模型模糊模型的新型管道 MPC 方法

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Robust and Nonlinear Control Pub Date : 2024-07-24 DOI:10.1002/rnc.7558
Filip Surma, Anahita Jamshidnejad
{"title":"与状态相关的动态管道 MPC:带有扰动模型模糊模型的新型管道 MPC 方法","authors":"Filip Surma, Anahita Jamshidnejad","doi":"10.1002/rnc.7558","DOIUrl":null,"url":null,"abstract":"Most real‐world systems are affected by external disturbances, which may be impossible or costly to measure. For instance, when autonomous robots move in dusty environments, the perception of their sensors is disturbed. Moreover, uneven terrains can cause ground robots to deviate from their planned trajectories. Thus, learning the external disturbances and incorporating this knowledge into the future predictions in decision‐making can significantly contribute to improved performance. Our core idea is to learn the external disturbances that vary with the states of the system, and to incorporate this knowledge into a novel formulation for robust tube model predictive control (TMPC). Robust TMPC provides robustness to bounded disturbances considering the known (fixed) upper bound of the disturbances, but it does not consider the dynamics of the disturbances. This can lead to highly conservative solutions. We propose a new dynamic version of robust TMPC (with proven robust stability), called state‐dependent dynamic TMPC (SDD‐TMPC), which incorporates the dynamics of the disturbances into the decision‐making of TMPC. In order to learn the dynamics of the disturbances as a function of the system states, a fuzzy model is proposed. We compare the performance of SDD‐TMPC, MPC, and TMPC via simulations, in designed search‐and‐rescue scenarios. The results show that, while remaining robust to bounded external disturbances, SDD‐TMPC generates less conservative solutions and remains feasible in more cases, compared to TMPC.","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"34 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State‐dependent dynamic tube MPC: A novel tube MPC method with a fuzzy model of model of disturbances\",\"authors\":\"Filip Surma, Anahita Jamshidnejad\",\"doi\":\"10.1002/rnc.7558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most real‐world systems are affected by external disturbances, which may be impossible or costly to measure. For instance, when autonomous robots move in dusty environments, the perception of their sensors is disturbed. Moreover, uneven terrains can cause ground robots to deviate from their planned trajectories. Thus, learning the external disturbances and incorporating this knowledge into the future predictions in decision‐making can significantly contribute to improved performance. Our core idea is to learn the external disturbances that vary with the states of the system, and to incorporate this knowledge into a novel formulation for robust tube model predictive control (TMPC). Robust TMPC provides robustness to bounded disturbances considering the known (fixed) upper bound of the disturbances, but it does not consider the dynamics of the disturbances. This can lead to highly conservative solutions. We propose a new dynamic version of robust TMPC (with proven robust stability), called state‐dependent dynamic TMPC (SDD‐TMPC), which incorporates the dynamics of the disturbances into the decision‐making of TMPC. In order to learn the dynamics of the disturbances as a function of the system states, a fuzzy model is proposed. We compare the performance of SDD‐TMPC, MPC, and TMPC via simulations, in designed search‐and‐rescue scenarios. The results show that, while remaining robust to bounded external disturbances, SDD‐TMPC generates less conservative solutions and remains feasible in more cases, compared to TMPC.\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/rnc.7558\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rnc.7558","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现实世界中的大多数系统都会受到外部干扰的影响,而这些干扰可能是无法测量或测量成本高昂的。例如,当自主机器人在尘土飞扬的环境中移动时,其传感器的感知会受到干扰。此外,不平整的地形也会导致地面机器人偏离计划轨迹。因此,学习外部干扰并将这一知识纳入决策中的未来预测,可大大有助于提高性能。我们的核心理念是学习随系统状态变化的外部干扰,并将这些知识纳入鲁棒管模型预测控制(TMPC)的新公式中。鲁棒 TMPC 考虑了干扰的已知(固定)上限,提供了对有界干扰的鲁棒性,但并不考虑干扰的动态。这会导致非常保守的解决方案。我们提出了一种新的鲁棒 TMPC 动态版本(已证明具有鲁棒稳定性),称为状态相关动态 TMPC(SDD-TMPC),它将扰动的动态性纳入 TMPC 的决策中。为了学习作为系统状态函数的扰动动态,我们提出了一个模糊模型。在设计的搜救场景中,我们通过模拟比较了 SDD-TMPC、MPC 和 TMPC 的性能。结果表明,与 TMPC 相比,SDD-TMPC 在保持对有界外部干扰的鲁棒性的同时,生成的解决方案不那么保守,在更多情况下仍然可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State‐dependent dynamic tube MPC: A novel tube MPC method with a fuzzy model of model of disturbances
Most real‐world systems are affected by external disturbances, which may be impossible or costly to measure. For instance, when autonomous robots move in dusty environments, the perception of their sensors is disturbed. Moreover, uneven terrains can cause ground robots to deviate from their planned trajectories. Thus, learning the external disturbances and incorporating this knowledge into the future predictions in decision‐making can significantly contribute to improved performance. Our core idea is to learn the external disturbances that vary with the states of the system, and to incorporate this knowledge into a novel formulation for robust tube model predictive control (TMPC). Robust TMPC provides robustness to bounded disturbances considering the known (fixed) upper bound of the disturbances, but it does not consider the dynamics of the disturbances. This can lead to highly conservative solutions. We propose a new dynamic version of robust TMPC (with proven robust stability), called state‐dependent dynamic TMPC (SDD‐TMPC), which incorporates the dynamics of the disturbances into the decision‐making of TMPC. In order to learn the dynamics of the disturbances as a function of the system states, a fuzzy model is proposed. We compare the performance of SDD‐TMPC, MPC, and TMPC via simulations, in designed search‐and‐rescue scenarios. The results show that, while remaining robust to bounded external disturbances, SDD‐TMPC generates less conservative solutions and remains feasible in more cases, compared to TMPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
期刊最新文献
Issue Information Disturbance observer based adaptive predefined-time sliding mode control for robot manipulators with uncertainties and disturbances Issue Information Issue Information A stabilizing reinforcement learning approach for sampled systems with partially unknown models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1