{"title":"优化甲磺酸浸出法,从尼日利亚富含锑的白云石矿中高效提取氧化镁","authors":"Ayo F. Balogun, Alafara A. Baba","doi":"10.1007/s11144-024-02693-z","DOIUrl":null,"url":null,"abstract":"<div><p>Dissolution of a Nigerian antigorite-rich dolomite ore in methanesulfonic acid (MSA) solution for its optimal industrial application was investigated. The impact of the acid concentration, reaction temperature, particle diameter as well as reaction time on the rate of the ore dissolution was examined. The magnesium recovery was 97.2% at the optimal conditions: 2.5 mol/L MSA, solid/liquid 10 g/L, 56 µm in 2 h, and reaction temperature of 75 ºC<b>.</b> According to the shrinking core model, test results indicated that mass diffusion was the controlling step of the overall reaction kinetics. The activation energy of 11.26 kJ mol<sup>−1</sup> gives support to this assertion. The correlation coefficient value of (⁓0.98) indicates that the workability of the proposed kinetic model is highly effective or functional. At optimal conditions, a high-purity MgO product was obtained.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3143 - 3155"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing methanesulfonic acid leaching for efficient extraction of magnesia from a Nigerian antigorite-rich dolomite ore\",\"authors\":\"Ayo F. Balogun, Alafara A. Baba\",\"doi\":\"10.1007/s11144-024-02693-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dissolution of a Nigerian antigorite-rich dolomite ore in methanesulfonic acid (MSA) solution for its optimal industrial application was investigated. The impact of the acid concentration, reaction temperature, particle diameter as well as reaction time on the rate of the ore dissolution was examined. The magnesium recovery was 97.2% at the optimal conditions: 2.5 mol/L MSA, solid/liquid 10 g/L, 56 µm in 2 h, and reaction temperature of 75 ºC<b>.</b> According to the shrinking core model, test results indicated that mass diffusion was the controlling step of the overall reaction kinetics. The activation energy of 11.26 kJ mol<sup>−1</sup> gives support to this assertion. The correlation coefficient value of (⁓0.98) indicates that the workability of the proposed kinetic model is highly effective or functional. At optimal conditions, a high-purity MgO product was obtained.</p></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"137 6\",\"pages\":\"3143 - 3155\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-024-02693-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02693-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Optimizing methanesulfonic acid leaching for efficient extraction of magnesia from a Nigerian antigorite-rich dolomite ore
Dissolution of a Nigerian antigorite-rich dolomite ore in methanesulfonic acid (MSA) solution for its optimal industrial application was investigated. The impact of the acid concentration, reaction temperature, particle diameter as well as reaction time on the rate of the ore dissolution was examined. The magnesium recovery was 97.2% at the optimal conditions: 2.5 mol/L MSA, solid/liquid 10 g/L, 56 µm in 2 h, and reaction temperature of 75 ºC. According to the shrinking core model, test results indicated that mass diffusion was the controlling step of the overall reaction kinetics. The activation energy of 11.26 kJ mol−1 gives support to this assertion. The correlation coefficient value of (⁓0.98) indicates that the workability of the proposed kinetic model is highly effective or functional. At optimal conditions, a high-purity MgO product was obtained.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.