Jiayun Qi, Zhongkai Zhang, Zun Zhang, Junxue Ren, Yibai Wang, Weizong Wang and Haibin Tang
{"title":"带磁性喷嘴的双阳极真空电弧推进器的等离子体羽流增强功能","authors":"Jiayun Qi, Zhongkai Zhang, Zun Zhang, Junxue Ren, Yibai Wang, Weizong Wang and Haibin Tang","doi":"10.1088/1361-6595/ad647c","DOIUrl":null,"url":null,"abstract":"Vacuum arc thruster (VAT) is a type of pulsed electric propulsion device that generates thrust based on vacuum arc discharges, it has great candidate for micro-newton force applications in orbit. To improve both the thrust and longevity of the VAT, a novel dual-anode structure, comprising a central anode and a ring anode, was developed. We conducted an investigation into the plasma discharge and acceleration process within the influence of a magnetic nozzle. The dual-anode architecture resulted in a reduction in the initial plasma impedance, thereby enhancing ion current and velocity. Analysis of surface parameters during discharge revealed a synergistic mechanism between the two insulator-conducting films, enabling a co-cyclic distribution of energy and resistance fluctuations within the discharge. Consequently, the dual-anode setup demonstrated a lifespan extension of at least twofold. Comparative analyses of arc energy, plasma velocity, ion current, and thrust variations with magnetic field strength were conducted between the dual-anode and single-anode configurations under magnetic nozzle influence. Results showed that the dual-anode structure increased ion current and velocity when subjected to magnetic nozzle influence, resulting in a thrust increase of up to 303%. Additionally, we developed a theoretical model for the diffusion coefficient to elucidate the adaptive splitting phenomenon of the arc within the dual-anode structure under magnetic field influence. This model suggests that the dual-anode structure can achieve a more significant enhancement in beam current from the magnetic nozzle compared to the single-anode configuration.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle\",\"authors\":\"Jiayun Qi, Zhongkai Zhang, Zun Zhang, Junxue Ren, Yibai Wang, Weizong Wang and Haibin Tang\",\"doi\":\"10.1088/1361-6595/ad647c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vacuum arc thruster (VAT) is a type of pulsed electric propulsion device that generates thrust based on vacuum arc discharges, it has great candidate for micro-newton force applications in orbit. To improve both the thrust and longevity of the VAT, a novel dual-anode structure, comprising a central anode and a ring anode, was developed. We conducted an investigation into the plasma discharge and acceleration process within the influence of a magnetic nozzle. The dual-anode architecture resulted in a reduction in the initial plasma impedance, thereby enhancing ion current and velocity. Analysis of surface parameters during discharge revealed a synergistic mechanism between the two insulator-conducting films, enabling a co-cyclic distribution of energy and resistance fluctuations within the discharge. Consequently, the dual-anode setup demonstrated a lifespan extension of at least twofold. Comparative analyses of arc energy, plasma velocity, ion current, and thrust variations with magnetic field strength were conducted between the dual-anode and single-anode configurations under magnetic nozzle influence. Results showed that the dual-anode structure increased ion current and velocity when subjected to magnetic nozzle influence, resulting in a thrust increase of up to 303%. Additionally, we developed a theoretical model for the diffusion coefficient to elucidate the adaptive splitting phenomenon of the arc within the dual-anode structure under magnetic field influence. This model suggests that the dual-anode structure can achieve a more significant enhancement in beam current from the magnetic nozzle compared to the single-anode configuration.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad647c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad647c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle
Vacuum arc thruster (VAT) is a type of pulsed electric propulsion device that generates thrust based on vacuum arc discharges, it has great candidate for micro-newton force applications in orbit. To improve both the thrust and longevity of the VAT, a novel dual-anode structure, comprising a central anode and a ring anode, was developed. We conducted an investigation into the plasma discharge and acceleration process within the influence of a magnetic nozzle. The dual-anode architecture resulted in a reduction in the initial plasma impedance, thereby enhancing ion current and velocity. Analysis of surface parameters during discharge revealed a synergistic mechanism between the two insulator-conducting films, enabling a co-cyclic distribution of energy and resistance fluctuations within the discharge. Consequently, the dual-anode setup demonstrated a lifespan extension of at least twofold. Comparative analyses of arc energy, plasma velocity, ion current, and thrust variations with magnetic field strength were conducted between the dual-anode and single-anode configurations under magnetic nozzle influence. Results showed that the dual-anode structure increased ion current and velocity when subjected to magnetic nozzle influence, resulting in a thrust increase of up to 303%. Additionally, we developed a theoretical model for the diffusion coefficient to elucidate the adaptive splitting phenomenon of the arc within the dual-anode structure under magnetic field influence. This model suggests that the dual-anode structure can achieve a more significant enhancement in beam current from the magnetic nozzle compared to the single-anode configuration.