动物遗传学和育种中的人工智能与经典方法

IF 0.6 4区 生物学 Q4 GENETICS & HEREDITY Russian Journal of Genetics Pub Date : 2024-07-27 DOI:10.1134/s1022795424700297
A. D. Soloshenkov, E. A. Soloshenkova, M. T. Semina, N. N. Spasskaya, V. N. Voronkova, Y. A. Stolpovky
{"title":"动物遗传学和育种中的人工智能与经典方法","authors":"A. D. Soloshenkov, E. A. Soloshenkova, M. T. Semina, N. N. Spasskaya, V. N. Voronkova, Y. A. Stolpovky","doi":"10.1134/s1022795424700297","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>Basic methods of population genetics and animal breeding and mathematical methods of machine learning used in animal breeding are analyzed. CatBoost library models were trained on the example of two domesticated species—horse (<i>Equus caballus</i>) and reindeer (<i>Rangifer tarandus</i>). Data from microsatellite panels of loci 16 and 17, respectively, were used to train the model using data on domesticated and wild reindeer, European and Russian horse breeds. The standard indicators (Accuracy, Precision, Recall, and <i>F1</i>) were calculated, and confusion matrices were constructed to assess the success of the model. New possibilities for identifying animal breed affiliation are shown.</p>","PeriodicalId":21441,"journal":{"name":"Russian Journal of Genetics","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence and Classical Methods in Animal Genetics and Breeding\",\"authors\":\"A. D. Soloshenkov, E. A. Soloshenkova, M. T. Semina, N. N. Spasskaya, V. N. Voronkova, Y. A. Stolpovky\",\"doi\":\"10.1134/s1022795424700297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>—</h3><p>Basic methods of population genetics and animal breeding and mathematical methods of machine learning used in animal breeding are analyzed. CatBoost library models were trained on the example of two domesticated species—horse (<i>Equus caballus</i>) and reindeer (<i>Rangifer tarandus</i>). Data from microsatellite panels of loci 16 and 17, respectively, were used to train the model using data on domesticated and wild reindeer, European and Russian horse breeds. The standard indicators (Accuracy, Precision, Recall, and <i>F1</i>) were calculated, and confusion matrices were constructed to assess the success of the model. New possibilities for identifying animal breed affiliation are shown.</p>\",\"PeriodicalId\":21441,\"journal\":{\"name\":\"Russian Journal of Genetics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s1022795424700297\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s1022795424700297","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要--分析了种群遗传学和动物育种的基本方法以及动物育种中使用的机器学习数学方法。以两个驯化物种--马(Equus caballus)和驯鹿(Rangifer tarandus)--为例,对CatBoost库模型进行了训练。利用驯鹿和野生驯鹿、欧洲马和俄罗斯马品种的数据,分别使用位点 16 和 17 的微卫星面板数据来训练模型。计算了标准指标(准确度、精确度、召回率和 F1),并构建了混淆矩阵来评估模型的成功与否。结果显示了识别动物品种隶属关系的新可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence and Classical Methods in Animal Genetics and Breeding

Abstract

Basic methods of population genetics and animal breeding and mathematical methods of machine learning used in animal breeding are analyzed. CatBoost library models were trained on the example of two domesticated species—horse (Equus caballus) and reindeer (Rangifer tarandus). Data from microsatellite panels of loci 16 and 17, respectively, were used to train the model using data on domesticated and wild reindeer, European and Russian horse breeds. The standard indicators (Accuracy, Precision, Recall, and F1) were calculated, and confusion matrices were constructed to assess the success of the model. New possibilities for identifying animal breed affiliation are shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Genetics
Russian Journal of Genetics 生物-遗传学
CiteScore
1.00
自引率
33.30%
发文量
126
审稿时长
1 months
期刊介绍: Russian Journal of Genetics is a journal intended to make significant contribution to the development of genetics. The journal publishes reviews and experimental papers in the areas of theoretical and applied genetics. It presents fundamental research on genetic processes at molecular, cell, organism, and population levels, including problems of the conservation and rational management of genetic resources and the functional genomics, evolutionary genomics and medical genetics.
期刊最新文献
The Molecular Genetic Characteristics of the Mutant Strain B-162/2 of the Bacteria Pseudomonas chlororaphis subsp. aurantiaca Genome-Wide Analysis in the Study of the Fetal Growth Restriction Pathogenetics Differentiation and Taxonomic Identification of Roburoid Oaks in the Caucasian and Crimean Regions Using Nuclear Microsatellite Markers Analysis of the Calpastatin (CAST  ) and Androgen Receptor (AR) Gene Polymorphisms as Biomarkers for Meat Quality Traits in Reindeer Rangifer tarandus Analysis of the Genetic Structures of 29 Horse Breeds of Russian Selection by STR Markers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1