Julia Sharp, Emily H. Griffith, Bruce A. Craig, Alexandra Hanlon, Sarah Peskoe, Jennifer Van Mullekom
{"title":"学术统计和数据科学合作单位的现状及实例","authors":"Julia Sharp, Emily H. Griffith, Bruce A. Craig, Alexandra Hanlon, Sarah Peskoe, Jennifer Van Mullekom","doi":"10.1002/sta4.718","DOIUrl":null,"url":null,"abstract":"The delivery of academic statistical collaboration resources can vary among types of institutions and across time. In particular, this variation might occur in the management of infrastructure and the business model, the staffing model and opportunities for staff development. In this manuscript, we present examples of these three themes in modern academic statistical collaboration units and describe key advantages and challenges.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"67 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The current landscape of academic statistical and data science collaboration units with examples\",\"authors\":\"Julia Sharp, Emily H. Griffith, Bruce A. Craig, Alexandra Hanlon, Sarah Peskoe, Jennifer Van Mullekom\",\"doi\":\"10.1002/sta4.718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The delivery of academic statistical collaboration resources can vary among types of institutions and across time. In particular, this variation might occur in the management of infrastructure and the business model, the staffing model and opportunities for staff development. In this manuscript, we present examples of these three themes in modern academic statistical collaboration units and describe key advantages and challenges.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.718\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.718","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The current landscape of academic statistical and data science collaboration units with examples
The delivery of academic statistical collaboration resources can vary among types of institutions and across time. In particular, this variation might occur in the management of infrastructure and the business model, the staffing model and opportunities for staff development. In this manuscript, we present examples of these three themes in modern academic statistical collaboration units and describe key advantages and challenges.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.