Andrea Zanellati;Stefano Pio Zingaro;Maurizio Gabbrielli
{"title":"在辍学预测中兼顾性能和可解释性","authors":"Andrea Zanellati;Stefano Pio Zingaro;Maurizio Gabbrielli","doi":"10.1109/TLT.2024.3425959","DOIUrl":null,"url":null,"abstract":"Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an Italian university, the research incorporates a range of variables, including demographic information, prior educational metrics, and real-time academic performance indicators. We present a nuanced comparative evaluation of the RF and FTT models, highlighting their predictive accuracy and interpretative capabilities. Our empirical results demonstrate the effectiveness of machine learning in managing student attrition, with FTT models outperforming RF models in terms of predictive accuracy and achieving a sensitivity rate of 81%. Significantly, the inclusion of historical academic data enhances the models' ability to identify students at increased risk of dropping out. Furthermore, we apply advanced explanatory techniques, such as shapley additive explanations, to investigate the discriminative power of these models across different student profiles. This provides valuable insights into the key variables influencing dropout risk, contributing to a more holistic understanding of the issue. In addition, we conduct a fairness analysis to ensure the ethical robustness of our predictive models, making them not only effective but also equitable tools.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"2140-2153"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612222","citationCount":"0","resultStr":"{\"title\":\"Balancing Performance and Explainability in Academic Dropout Prediction\",\"authors\":\"Andrea Zanellati;Stefano Pio Zingaro;Maurizio Gabbrielli\",\"doi\":\"10.1109/TLT.2024.3425959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an Italian university, the research incorporates a range of variables, including demographic information, prior educational metrics, and real-time academic performance indicators. We present a nuanced comparative evaluation of the RF and FTT models, highlighting their predictive accuracy and interpretative capabilities. Our empirical results demonstrate the effectiveness of machine learning in managing student attrition, with FTT models outperforming RF models in terms of predictive accuracy and achieving a sensitivity rate of 81%. Significantly, the inclusion of historical academic data enhances the models' ability to identify students at increased risk of dropping out. Furthermore, we apply advanced explanatory techniques, such as shapley additive explanations, to investigate the discriminative power of these models across different student profiles. This provides valuable insights into the key variables influencing dropout risk, contributing to a more holistic understanding of the issue. In addition, we conduct a fairness analysis to ensure the ethical robustness of our predictive models, making them not only effective but also equitable tools.\",\"PeriodicalId\":49191,\"journal\":{\"name\":\"IEEE Transactions on Learning Technologies\",\"volume\":\"17 \",\"pages\":\"2140-2153\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Learning Technologies\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10612222/\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10612222/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Balancing Performance and Explainability in Academic Dropout Prediction
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an Italian university, the research incorporates a range of variables, including demographic information, prior educational metrics, and real-time academic performance indicators. We present a nuanced comparative evaluation of the RF and FTT models, highlighting their predictive accuracy and interpretative capabilities. Our empirical results demonstrate the effectiveness of machine learning in managing student attrition, with FTT models outperforming RF models in terms of predictive accuracy and achieving a sensitivity rate of 81%. Significantly, the inclusion of historical academic data enhances the models' ability to identify students at increased risk of dropping out. Furthermore, we apply advanced explanatory techniques, such as shapley additive explanations, to investigate the discriminative power of these models across different student profiles. This provides valuable insights into the key variables influencing dropout risk, contributing to a more holistic understanding of the issue. In addition, we conduct a fairness analysis to ensure the ethical robustness of our predictive models, making them not only effective but also equitable tools.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.