{"title":"诱发层波动的液晶超分子:从层次结构到耗散结构","authors":"Atsushi Yoshizawa","doi":"10.3390/cryst14080681","DOIUrl":null,"url":null,"abstract":"Liquid crystals, which have both liquid and solid properties, inevitably exhibit fluctuations. Some frustrated liquid-crystalline phases with a hierarchical structure, such as cybotactic nematic, modulated smectic, and bicontinuous cubic phases, are fascinating fluctuation-induced phases. In addition to these equilibrium phases, a pattern formation that is a nonequilibrium order through fluctuation is one of the most attractive research areas in soft matter. In this review, the studies on producing these fluctuation-induced orders in liquid crystals are described. Liquid-crystalline supermolecules in which several mesogens are connected via a flexible spacer have been designed. They have not only a characteristic shape but also an intra-molecular dynamic order. The supermolecules induce the fluctuations in layer structures at a molecular level, producing from the frustrated hierarchical to dynamic dissipative structures. In addition to reviewing molecular design for the hierarchical structures, the pattern propagation in a smectic phase is discussed based on the rotation of smectic blocks through Rayleigh–Bénard convection.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-Crystalline Supermolecules Inducing Layer Fluctuations: From Hierarchical to Dissipative Structures\",\"authors\":\"Atsushi Yoshizawa\",\"doi\":\"10.3390/cryst14080681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid crystals, which have both liquid and solid properties, inevitably exhibit fluctuations. Some frustrated liquid-crystalline phases with a hierarchical structure, such as cybotactic nematic, modulated smectic, and bicontinuous cubic phases, are fascinating fluctuation-induced phases. In addition to these equilibrium phases, a pattern formation that is a nonequilibrium order through fluctuation is one of the most attractive research areas in soft matter. In this review, the studies on producing these fluctuation-induced orders in liquid crystals are described. Liquid-crystalline supermolecules in which several mesogens are connected via a flexible spacer have been designed. They have not only a characteristic shape but also an intra-molecular dynamic order. The supermolecules induce the fluctuations in layer structures at a molecular level, producing from the frustrated hierarchical to dynamic dissipative structures. In addition to reviewing molecular design for the hierarchical structures, the pattern propagation in a smectic phase is discussed based on the rotation of smectic blocks through Rayleigh–Bénard convection.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14080681\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080681","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Liquid-Crystalline Supermolecules Inducing Layer Fluctuations: From Hierarchical to Dissipative Structures
Liquid crystals, which have both liquid and solid properties, inevitably exhibit fluctuations. Some frustrated liquid-crystalline phases with a hierarchical structure, such as cybotactic nematic, modulated smectic, and bicontinuous cubic phases, are fascinating fluctuation-induced phases. In addition to these equilibrium phases, a pattern formation that is a nonequilibrium order through fluctuation is one of the most attractive research areas in soft matter. In this review, the studies on producing these fluctuation-induced orders in liquid crystals are described. Liquid-crystalline supermolecules in which several mesogens are connected via a flexible spacer have been designed. They have not only a characteristic shape but also an intra-molecular dynamic order. The supermolecules induce the fluctuations in layer structures at a molecular level, producing from the frustrated hierarchical to dynamic dissipative structures. In addition to reviewing molecular design for the hierarchical structures, the pattern propagation in a smectic phase is discussed based on the rotation of smectic blocks through Rayleigh–Bénard convection.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.