应用于调整主动悬架系统线性二次调节器控制器的混合 "大灰狼 "优化技术

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Science and Technology-An International Journal-Jestech Pub Date : 2024-08-01 DOI:10.1016/j.jestch.2024.101765
Hasan Başak
{"title":"应用于调整主动悬架系统线性二次调节器控制器的混合 \"大灰狼 \"优化技术","authors":"Hasan Başak","doi":"10.1016/j.jestch.2024.101765","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle suspension systems have become increasingly crucial for both driving safety and comfort. Active suspension systems can dynamically adjust suspension characteristics in real-time by introducing force into the system. Designing a controller for the real-time adjustment of the control force in active suspension systems is essential to meet challenging control objectives, including body acceleration, suspension deflection, and tire deflection. This article proposes a hybrid optimization approach named Coati–Grey Wolf Optimization (COAGWO), which combines the strengths of the coati optimization algorithm and grey wolf optimization to tune the gains of linear quadratic control applied to vehicle suspension systems. The COAGWO algorithm incorporates a unique strategy inspired by the Coati Optimization Algorithm, allowing wolves to climb trees. This enhancement significantly improves the wolves’ ability to explore the global search space and reduces the likelihood of being trapped in local optima. Initially, we conduct extensive experiments using a suite of challenging optimization problems from the CEC2019 benchmark to evaluate the effectiveness of the COAGWO algorithm. The effectiveness of COAGWO is compared against several state-of-the-art algorithms, including grey wolf, coati, aquila-grey wolf, whale, reptile search, tunicate swarm, and seagull optimization algorithms. The experimental results demonstrate that COAGWO consistently outperforms these algorithms in terms of solution quality and convergence speed. For the optimal weight selection problem of linear quadratic control applied to the control of vehicle suspension systems, the excellent performance of the proposed method is illustrated through comparative simulation studies under various road disturbance conditions. The results indicate that the COAGWO algorithm achieves a more efficient active suspension system compared to competitor algorithms by reducing the overall acceleration of the driver’s body, thereby enhancing ride comfort.</p></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"56 ","pages":"Article 101765"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215098624001514/pdfft?md5=86d02a5aabd1c8a600b3e3e018ae9114&pid=1-s2.0-S2215098624001514-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hybrid coati–grey wolf optimization with application to tuning linear quadratic regulator controller of active suspension systems\",\"authors\":\"Hasan Başak\",\"doi\":\"10.1016/j.jestch.2024.101765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vehicle suspension systems have become increasingly crucial for both driving safety and comfort. Active suspension systems can dynamically adjust suspension characteristics in real-time by introducing force into the system. Designing a controller for the real-time adjustment of the control force in active suspension systems is essential to meet challenging control objectives, including body acceleration, suspension deflection, and tire deflection. This article proposes a hybrid optimization approach named Coati–Grey Wolf Optimization (COAGWO), which combines the strengths of the coati optimization algorithm and grey wolf optimization to tune the gains of linear quadratic control applied to vehicle suspension systems. The COAGWO algorithm incorporates a unique strategy inspired by the Coati Optimization Algorithm, allowing wolves to climb trees. This enhancement significantly improves the wolves’ ability to explore the global search space and reduces the likelihood of being trapped in local optima. Initially, we conduct extensive experiments using a suite of challenging optimization problems from the CEC2019 benchmark to evaluate the effectiveness of the COAGWO algorithm. The effectiveness of COAGWO is compared against several state-of-the-art algorithms, including grey wolf, coati, aquila-grey wolf, whale, reptile search, tunicate swarm, and seagull optimization algorithms. The experimental results demonstrate that COAGWO consistently outperforms these algorithms in terms of solution quality and convergence speed. For the optimal weight selection problem of linear quadratic control applied to the control of vehicle suspension systems, the excellent performance of the proposed method is illustrated through comparative simulation studies under various road disturbance conditions. The results indicate that the COAGWO algorithm achieves a more efficient active suspension system compared to competitor algorithms by reducing the overall acceleration of the driver’s body, thereby enhancing ride comfort.</p></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"56 \",\"pages\":\"Article 101765\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2215098624001514/pdfft?md5=86d02a5aabd1c8a600b3e3e018ae9114&pid=1-s2.0-S2215098624001514-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098624001514\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624001514","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

汽车悬挂系统对驾驶的安全性和舒适性越来越重要。主动悬架系统可通过向系统引入力来实时动态调节悬架特性。要实现车身加速度、悬架挠度和轮胎挠度等具有挑战性的控制目标,设计一种用于实时调整主动悬架系统控制力的控制器至关重要。本文提出了一种名为 COAGWO(Coati-Grey Wolf Optimization)的混合优化方法,该方法结合了 Coati 优化算法和 Grey Wolf 优化算法的优点,用于调整应用于车辆悬架系统的线性二次控制增益。COAGWO 算法采用了一种受浣熊优化算法启发的独特策略,允许狼爬树。这一改进大大提高了狼探索全局搜索空间的能力,降低了陷入局部最优的可能性。最初,我们使用 CEC2019 基准中的一套具有挑战性的优化问题进行了大量实验,以评估 COAGWO 算法的有效性。我们将 COAGWO 的有效性与几种最先进的算法进行了比较,包括灰狼算法、浣熊算法、水鸟-灰狼算法、鲸鱼算法、爬行动物搜索算法、unicate swarm 算法和海鸥优化算法。实验结果表明,COAGWO 在求解质量和收敛速度方面始终优于这些算法。对于应用于车辆悬架系统控制的线性二次控制的最优权值选择问题,通过在各种道路干扰条件下的比较仿真研究,说明了所提方法的优异性能。结果表明,与竞争算法相比,COAGWO 算法通过降低驾驶员身体的整体加速度,实现了更高效的主动悬架系统,从而提高了乘坐舒适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid coati–grey wolf optimization with application to tuning linear quadratic regulator controller of active suspension systems

Vehicle suspension systems have become increasingly crucial for both driving safety and comfort. Active suspension systems can dynamically adjust suspension characteristics in real-time by introducing force into the system. Designing a controller for the real-time adjustment of the control force in active suspension systems is essential to meet challenging control objectives, including body acceleration, suspension deflection, and tire deflection. This article proposes a hybrid optimization approach named Coati–Grey Wolf Optimization (COAGWO), which combines the strengths of the coati optimization algorithm and grey wolf optimization to tune the gains of linear quadratic control applied to vehicle suspension systems. The COAGWO algorithm incorporates a unique strategy inspired by the Coati Optimization Algorithm, allowing wolves to climb trees. This enhancement significantly improves the wolves’ ability to explore the global search space and reduces the likelihood of being trapped in local optima. Initially, we conduct extensive experiments using a suite of challenging optimization problems from the CEC2019 benchmark to evaluate the effectiveness of the COAGWO algorithm. The effectiveness of COAGWO is compared against several state-of-the-art algorithms, including grey wolf, coati, aquila-grey wolf, whale, reptile search, tunicate swarm, and seagull optimization algorithms. The experimental results demonstrate that COAGWO consistently outperforms these algorithms in terms of solution quality and convergence speed. For the optimal weight selection problem of linear quadratic control applied to the control of vehicle suspension systems, the excellent performance of the proposed method is illustrated through comparative simulation studies under various road disturbance conditions. The results indicate that the COAGWO algorithm achieves a more efficient active suspension system compared to competitor algorithms by reducing the overall acceleration of the driver’s body, thereby enhancing ride comfort.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
期刊最新文献
Entropy generation and heat transfer in Time-Fractional mixed convection of nanofluids in Darcy-Forchheimer porous channel Etching-free fabrication method for silver nanowires-based SERS sensors for enhanced molecule detection AESware: Developing AES-enabled low-power multicore processors leveraging open RISC-V cores with a shared lightweight AES accelerator Sustainability assessment integrating BIM and decision-making for modular slab construction against conventional cast-in-situ 1D model and rule-based calibration strategy to improve the performance of a turbocharged spark ignition engine over the whole engine map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1